
NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 1 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Formal Verification using the

IITD-Concurrency WorkBench

S. Arun-Kumar

sak(a)cse.iitd.ernet.in

Department of Computer Science and Engineering

I. I. T. Delhi, Hauz Khas, New Delhi 110016.

http://www.cse.iitd.ac.in/ sak

September 26, 2005

http://www.cse.iitd.ernet.in/iitd-cwb/
http://www.cse.iitd.ac.in/~sak

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 2 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Overview
1. History & Lineage

2. Design Languages

3. Capabilities of the CWB-NC

4. Why use the IITD-CWB?

5. Behavioural Verification

6. Logical Properties

7. Conclusion

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 3 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

History & Lineage

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 4 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Concurrency Workbenches
1. The Edinburgh Concurrency Workbench (old)

2. The Concurrency Workbench of North Carolina

3. The Concurrency Workbench of the New Century

4. The IITD Concurrency Workbench

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 5 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Edinburgh Concurrency Workbench
(old)

1. Designed by Cleaveland, Parrow and Steffen

2. Implemented in Standard ML ’90

3. Used CCS as the only design language

4. Implemented behavioural verification

5. Implemented Hennessy-Milner Logic

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 6 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Concurrency Workbench of North
Carolina

1. Complete redesign by Rance Cleaveland

2. Used the new features of a very much changed SML

3. Expanded to include the µ-calculus as the basic underlying
logic

4. Modularized to allow for different kinds of design lan-
guages

5. Used a separate back-end generator for new design lan-
guages

6. Designed a sister software PAC-NC for the purpose of
back-end generation

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 7 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Process Algebra Compiler of North
Carolina

1. Designed by Steve Sims under Rance Cleaveland’s super-
vision

2. A compiler generator for the CWB-NC

3. Allowed a syntactic specification of both syntax and se-
mantics of design languages

4. Used ML-Lex and ML-YACC to generate the back-end for
the CWB-NC

5. Allowed for experimenting with new languages and verifi-
cation

6. Tested out on CCS, CSP, Basic LOTOS etc.

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 8 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Semantics in PAC-NC
1. Designed a syntax for formal specification of operational

semantics

2. semantics specified through labelled transition systems

3. Used ML-Lex and ML-Yacc to scan and parse semantic
specification

4. Generated the back-end for CWB-NC as LTS generation

5. Allowed for the design of special libraries to be included in
the back-end

6. Greater flexibility and scope for customization as opposed
to native languages of other model-checkers (e.g. SPIN,
SMV, Nu-SMV).

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 9 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The Concurrency Workbench of the New
Century

1. An enhancement of the North Carolina version

2. Includes GCTL* and SCCS as new interfaces

3. Remains compatible with the PAC-NC.

4. Allows for installation on win32 platforms

5. Comes as an RPM for Red Hat Linux installations

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 10 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The IITD Concurrency Workbench
1. Faithful to the CWB-New Century version 1.2

2. Includes a web-interface for all basic model-checking needs

3. Includes an ACSR interface

4. Interfaces for GCTL* not currently available

5. Interface for the simulator not available

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 11 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Why use the IITD-CWB?
1. No installation required

2. Minimal learning required

3. Available for free public use by anyone who simply wants
to try it out

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 12 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Why use the IITD-CWB 1?
1. No installation required

• Installation of the CWB-NC first requires installing
SML version 110.?.?

2. Minimal learning required

3. Available for free public use by anyone who simply wants
to try it out

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 13 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Why use the IITD-CWB 2?
1. No installation required

2. Minimal learning required

• 1 web-page of instructions as opposed to a 100-page
manual

• The GUI of the CWB-NC is somewhat unreliable and
does not easily customize. The IITD-CWB simply uses
the well-known features of the browser.

• Allows occasional and professional user to by-pass the
crummy command line interface of the CWB-NC

• Easy to do cut-and-paste submission as well as upload-
ing of large files.

3. Available for free public use by anyone who simply wants
to try it out

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 14 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Why use the IITD-CWB 3?
1. No installation required

2. Minimal learning required

3. Available for free public use by anyone who simply wants
to try it out

• once,

• twice or

• ... any number of times if you begin to like it!

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 15 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Design Languages
• Most model-checkers have a native language the user must

use to write system specification.

• Design languages and the user interface form the core
learning process for a lay user of the system

• The currently supported design languages in the IITD-
CWB

– CCS, CSP, Basic LOTOS, SCCS, PCCS, TCCS and
ACSR (not in CWB-NC)

• The currently supported logics for model-checking (also in
CWB-NC)

– HML, µ-calculus, CTL, GCTL*

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 16 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Capabilities of the CWB-NC
• Model-checking: Given a design SYS written in a sup-

ported design language and a property Prop written in a
supported logic, answers the question

Does SYS satisfy Prop?

Also provides a counterexample if answer is “NO!”.

• Verification: Given a specification SPEC and an imple-
mentation IMP both written in the same design language,
answers the question?

Do SPEC and IMP have the same observable behaviour?

Also provides counterexample, if the answer is “NO!”

• Simulator: Given a design SYS step through its execution
interactively.

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 17 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Behavioural Verification: Equivalences
Given a SPEC and an IMP

• Is SPEC strongly equivalent to IMP?

• Is SPEC observably equivalent to IMP?

• Is SPEC observably congruent to IMP?

• Is SPEC trace equivalent to IMP?

• Is SPEC testing equivalent to IMP?

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 18 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Behavioural Verification: Preorders
Given a SPEC and an IMP

• Is IMP MAY contained in SPEC?

• Is IMP MUST contained in SPEC?

• Is SPEC MAY contained in IMP?

• Is SPEC MUST contained in IMP?

If the answers to all the above questions are “YES”, then they
are both testing equivalent.

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 19 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equivalence checking: XOR3 Spec
Consider an XOR of 3 inputs. What should be the specifica-
tion?

| |

a --->o |
| |

b --->o XOR_3 o----> add
| |

c --->o |
|____________|

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 20 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equivalence checking: XOR3 Spec
Specification in CCS.

proc XOR_3 = a0.(b0.(c0.’add0.nil +
c1.’add1.nil

) +
b1.(c0.’add1.nil +

c1.’add0.nil
)

) +
a1.(b0.(c0.’add1.nil +

c1.’add0.nil
) +

b1.(c0.’add0.nil +
c1.’add1.nil

)
)

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 21 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equivalence checking: XOR3 Imp
Construct an XOR3 of 3 inputs with two XOR gates (of 2
inputs each).

|________ |
| | XOR_XOR_2 |

a --->o | |
| XOR1 o_____ i |

b --->o | | _______|
|________| | | |
| |------>o |
| | XOR2 o-----> add

c ----o--------------------->o |
| |_______|
|______________________________|

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 22 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equivalence checking: XOR3 Imp
Begin with a specification of an XOR gate with 2 inputs.

proc XOR = a0.(b0.’out0.nil + b1.’out1.nil) +
a1.(b0.’out1.nil + b1.’out0.nil)

Get 2 copies of this gate (appropriately renamed).
Here’s the first one.

| |

a --->o |
| XOR_1 o----> i
| |

b --->o |
|____________|

proc XOR_1 = XOR [i0/out0, i1/out1]

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 23 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equivalence checking: XOR3 Imp
And here’s the second.

| |

i --->o |
| XOR_2 o----> add
| |

c --->o |
|____________|

proc XOR_2 = XOR [i0/a0, i1/a1, c0/b0, c1/b1,
add0/out0, add1/out1]

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 24 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equivalence checking: XOR3 Imp
Now connect them up by matching names

|________ |
| | XOR_XOR_2 |

a --->o | |
| XOR1 o_____ i |

b --->o | | _______|
|________| | | |
| |------>o |
| | XOR2 o-----> add

c ----o--------------------->o |
| |_______|
|______________________________|

proc XOR_XOR_2 = (XOR_1 | XOR_2) \ {i0, i1}

And package it in a box so nobody from outside can see what
you have done.

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 25 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equivalence checking: XOR3 Imp
• Are XOR 3 and XOR XOR 2 observably equivalent?

• Are XOR 3 and XOR XOR 2 observably congruent?

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 26 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Equivalence checking: Other examples
• Systolic systems: Palindromes

• Protocols: Alternating Bit

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 27 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Logical Properties
• Modal µ-calculus

• Computation tree logic

• Generalized Hennessy Milner Logic with recursion
(GCTL*)

– CTL* enhanced with atomic propositions for LTSs

– Uses Release as a dual for Until

– Works on LTSs rather than Kripke systems

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 28 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Logical Properties: Examples
<act set>ψ = E ({ act set } /\ X ψ)
[act set]ψ = A ({ act set } -> X ψ)

prop can_deadlock = E F ~{- }

prop recv_guarantee = A G ({send} -> F {’receive})

prop fair_recv_guarantee =
A ((G F {-t}) -> (G {send} -> F {’receive}))

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 29 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusions
• Can we combine model-checking with an inductive

theorem-proving mechanism? Then proof of hardware de-
signs and their extensions, e.g. 32 bit to 64 bit or bit-sliced
designs could be proven more easily by a theorem-prover
which which may work on a certified model-check for the
basis of the induction?

• The use of behavioural relations can reduce the burden on
proofs by using (pre)congruences to justify and validate
designs to ameliorate the state explosion problem.

• The main problem with logical properties is that for real life
designs, often the number of properties which constitute
the specification can be so large that even after you have
verified whatever properties you specify, you may wonder
whether your design is complete.

http://www.cse.iitd.ernet.in/iitd-cwb/

NWCV-DAIICT

Home Page

Title Page

JJ II

J I

Page 30 of 30

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusions
• This is because modularity is not built into the logics,

whereas it is built into algebraic specifications.

• This state explosion problem reduces when both specifi-
cation and implementation are in the same language and
one can use behavioural notions, such as equivalences and
preorders (and one can take advantage of congruences and
precongruences).

• Most model-checking works only on finite-state systems.
But for infinite-state systems static analysis and abstrac-
tion may be required.

• But under abstraction the full abstraction property is lost.

• So a verification of all the specified properties does not
guarantee that your system is correct. But any incorrect-
ness in your abstraction also implies that your concrete
system is at least equally wrong.

http://www.cse.iitd.ernet.in/iitd-cwb/

