
Assignment: Byte Code Interpreter

Write a Bytecode interpreter for the following byte-code language.

1 Notational Conventions
1. Symbols belonging to the bytecode lanaguage are in teletype font. There

are no symbols in the langauge which use uppercase letters
2. Meta symbols are in italics and always start with an Uppercase letter
3. The definitions are given as production rules of a grammar written in the

standard form that you must have studied in any course on programming
languages.

4. As is customary wherever convenient the usual symbols are used to denote
regular expression operations. You must have seen most of these notations
used in the man pages on UNIX-like systems. For example
{ } denotes 0 or more occurrences of anything enclosed in the braces,
[] denotes an optional item (0 or 1 occurrence of the item enclosed in

brackets)
∗ denotes the Kleene star (0 or more iterations)
+ denotes the Kleene plus (1 or more iterations)
| denotes an alternative

5. All words and symbols in the language are reserved and cannot be used
as variables in the program

6. val denoting call-by-value and ref denoting call-by-reference are the only
two parameter passing mechanisms.

7. The notation for pointer referencing/dereferencing use the unary operators
addr and deref and I sincerely hope they are consistent with the slides
in the overview presented earlier.

8. The symbol [] stands for array indexing and shopuld also be consistent
with the slides. Typically in

V arName1 [] V arName2

V arName1 is the array name and V arName2 is the index. Due to the
restriction to 3 operands one cannot make assignments such as a [] i :=
b [] j. Further one cannot mix array-indexing operations with referenc-
ing and dereferencing. In each case simple variables must be introduced.

9. Note that -- is the binary subtraction operation, whereas - denotes the
unary minus. Also see Integer and Float.

10. ! stands for boolean negation, | stands for boolean disjunction and & for
boolean conjunction.

1

2 Language Definition
1. This is a slightly glorified assembly language. So the scope rules are such

that all new scopes within the global scope are all mutually disjoint.
2. The global variables are those that occur in the Program statement rule.

3. Procedures do have names, which are simply identifiers. Procedures are
delimited by a begin · · · end, so their scopes are clearly delimited. Proce-
dure names are also labels, but other labels usually used for pure transfer
of control have a certain lexical property defined in the rule for Label.

4. ReadInstr and WriteInstr may be used for terminal i/o. Large arrays
will have to be input or output by defining appropriate loops with labels
and GotoInstr and/or IfInstr instructions.

5. Since a procedure might have a large number of formal parameters, indi-
vidual formal and actual parameters have been separated out into distinct
instructions for each parameter. Clearly, (large) arrays cannot be pa-
rameters except when the parameter-passing mechanism is ref. In such
cases the whole array is passed as a reference parameter, so as to avoid
duplicating the array.

6. It is obvious that a procedure call is not a single instruction, but would
actually be a a sequence of as many ArgInstr instructions as there are
parameters for the procedure followed by CallInstr. Similarly, a proce-
dure declaration, would be immediately followed by a sequence of as many
FormalParamInstr as necessary, before any other executable instruction
of the procedure.

7. There is no recursion anywhere in this language (since this is primarily an
assembly language).

2

Program → program ProgramName InstrSeq exit {ProgramUnit∗}
ProgramUnit → [ProcedureName ::] begin InstrSeq end
InstrSeq → {[Label :]Instr[# Comment]}∗
Instr → FormalParamInstr

| AssignInstr
| GotoInstr
| IfInstr
| CallInstr
| ArgInstr
| ReturnInstr
| WriteInstr
| ReadInstr

FormalParamInstr → param V arName ParamMech
ParamMech → val | ref
AssignInstr → V arName := Expression

| V arName := V arName [] Operand
| V arName := addr V arName
| V arName := deref V arName
| deref V arName := Operand

GotoInstr → goto Label
IfInstr → if RelExpr goto Label
CallInstr → call ProcedureName
ArgInstr → arg Operand
ReturnInstr → return
WriteInstr → print V arName {, V arName}
ReadInstr → read V arName {, V arName}
Expression → Operand BinaryOpr Operand

| UnaryOpr Operand
| Operand

RelExpr → Operand RelOpr Operand
| [!]Operand

Operand → V arName | Const
BinOpr → IntOpr | RelOpr | BoolOpr | FloatOpr
IntOpr → + | −− | ∗ | div | mod
FloatOpr → + | −− | ∗ | /
BoolOpr → & | |
RelOpr → = | ! = | < | <= | > | >=
UnaryOpr → − | addr | deref
Const → Integer | Float | Boolean
Integer → 0 | [−]NZDigitDigit∗

Float → [−]Digit+ .Digit+

Boolean → true | false
Label → LInteger
V arName → Identifier
ProcedureName → Identifier
ProgramName → Identifier
Identifier → Letter{Letter | Digit | }∗
Letter → a | . . . | z | A | . . . | Z
Digit → 0 | NZDigit
NZDigit → 1 | . . . | 9

3

3 FAQs

This is a collections of FAQ’s which came up during the process leading to the
submission of the assignment.

Q. What does ’::’ mean in the program rule of 2nd assignment

A. Just syntactic sugar to distinguish it from a label. Want to get rid of it?
Go ahead.

Q. Generally an interpreter will execute the instructions one by one. But since
in our grammar, call to procedure always come before definition,we need
to keep on building the AST till the end of the input. At the end we
can traverse the AST and execute the instructions. This approach is
similar to that of compiler where we traverse through the whole code
before generating code. The same applies to forward jumps using goto.
Will it be acceptable solution that the instructions are executed after the
input to interpreter is complete ?

A. That is not completely true. Every assembly language allows for forward
jumps, but assembly programs are always interpreted. It only means you
may have to scan the entire program once before you actually interpret
it instruction by instruction. But you don’t necessarily have to construct
the AST. You can

1. Simply scan the entire program once, collect all forward references.
A variation of this is that you can simply create a symbol table for
all identifiers.

2. Resolve each reference as and when you get its definition. Keep this
information handy for the for the actual interpretation.

3. After checking that your table has no unresolved references, execute
each instruction with the help of this new reference table. otherwise
throw out the program with an error message

unresolved reference: <identifier> in line <line no.>

Q. Another minor issue: the grammar allows assignment like -

Variable := addr1 (Address of a constant)

using rules of AssignInstr, Expression, UnaryOpr, Operand, Const.

A. But you will require them anyway since you are going to store constants
somewhere and you need access to them.

Q. While passing the arguments as references. We can as well pass a pointer to
a local variable with-in the procedure and then this gets referred by the
called procedure.Do we need to handle such cases and thus have complete
simulation for activation records.?

4

A. You have actually hit upon one of the important reasons why we SHOULD
discourage programming in Assembly and encourage HIGH-LELVEL pro-
gramming. What you are saying is possible but you don’t need to handle
it, if you are clear that this is only an intermediate representation which
will not be allowed to a user programmer of your HIGH-LEVEL language.

The reason why ASSEMBLY-LEVEL language programming is still be-
ing encouraged especially in areas like real-time and embedded systems
is due to performance. The fact is that the tradeoff is between STRUC-
TURE, ABSTRACTION, READABILITY etc on the one hand against
(PERCEIVED) REQUIRED performance on the other.

In a first level compiler course it is NOT NECESSARY to handle all this.

Q. Also the type of the variable passing gets determined at the time of formal
param declaration ,should it be at arg declaration time?

A. NO. For actual parameters, it just needs checking that it is consistent with
the formal parameter. That should be checkable easily from the symbol
table that you construct.

Q. And one more thing the grammar allows array indexing by bools and reals
i guess we can forget that.

A. Yes, you can safely forget that.

Q. But we do have references as a possible type of data. What operations do
we allow on them. I guess addition only.

A. Yes, that is right. The other operations are reading and writing into the
locations pointed by them.

Q. Can there be two variables one local and one global of the same name then
what’s the visibility rule?

A. The usual rule. When control is in the procedure containing the variable,
only the local one is visible. Outside it only the global is visible.

5

	Notational Conventions
	Language Definition
	FAQs

