
Distributed Network Monitoring and Multicommodity
Flows: A Primal-Dual Approach

Baruch Awerbuch
∗

Johns Hopkins University.
baruch@cs.jhu.edu

Rohit Khandekar
IBM T.J. Watson Research Center.

rkhandekar@gmail.com.

ABSTRACT
A canonical distributed optimization problem is solving a
Covering/Packing Linear Program in a distributed environ-
ment with fast convergence and low communication and
space overheads. In this paper, we consider the following
covering and packing problems, which are the dual of each
other:

• Passive Commodity Monitoring: minimize the total
cost of monitoring devices used to measure the network
traffic on all paths.

• Maximum Throughput Multicommodity flow: maximize
the total value of the flow with bounded edge capaci-
ties.

We present the first known distributed algorithms for both
of these problems that converge to (1 + ε)-approximate so-
lutions in poly-logarithmic time with communication and
space overheads that depend on the maximal path length
but are almost independent of the size of the entire network.
Previous distributed solutions achieving similar approxima-
tions required convergence time, communication, or space
overheads that depend polynomially on the size of the en-
tire network. The sequential simulation of our algorithm
is more efficient than the fastest known approximation algo-
rithms for multicommodity flows, e.g., Garg-Könemann [14],
when the maximal path length is small.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: [Non-numerical Algorithms and Problems]

General Terms
algorithms, theory

∗Partially supported by NSF grants CCF 0515080, ANIR-
0240551, CCR-0311795, and CNS-0617883.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/0008 ...$5.00.

Keywords
distributed algorithms, multi-commodity flows, passive net-
work measurement

1. INTRODUCTION
The distributed Passive Flow Monitoring (PFM) is used

by network routers with attached storage devices to observe
and record the packet traffic on operational network links,
without injecting any traffic of its own onto the network.
That is, the monitoring or logging device is non-intrusive.
Our objective is to accomplish recording, at random, some
percentage of network traffic without imposing too much
overhead on the recording devices. The goal of monitoring
is figuring out how to measure or log network activities,
with the objective of covering all the paths using monitoring
devices.

The problem can be reduced to the classical set cover
problem, which involves an exponential number of elements
(paths); thus this reduction is not efficient. This problem
has not been considered in the theoretical computers science
literature, but it has been well addressed in the applied com-
munity. Many conferences are dedicated to network moni-
toring and measurements, and many scientific and engineer-
ing papers have been published on the topic [20, 13, 21, 18,
15].

The Maximum Throughput Multicommodity Flow (MCF)
is a classical optimization problem that directly addresses
practically important issues of congestion and bandwidth
management in connection-oriented network architectures.
The objective here is to maximize the total flow that can
be routed subject to edge-capacities. It can be formulated
as a packing linear program which turns out to be the dual
of the covering linear program of the PFM problem. In the
theoretical computer science, it has been first introduced,
in the same distributed model as ours, by Awerbuch and
Leighton [7, 8].

1.1 Distributed Routers Model
This paper deals with the “classic” distributed network

Routers model [2, 10, 9] which is based on an assumption
that intelligence is embodied in the network routers and the
computation proceeds via message exchanges between the
neighboring routers. More precisely, we consider a network
comprised of routers, connected to each other via commu-
nication links. The network graph G = (V, E) has nodes V
representing the routers and edges E representing the links.
Each router can exchange message with its neighbors in the
graph. Each router is also aware of all the commodities in

the network. The communication between neighbors takes
exactly one time unit of a globally accessible clock [2].

This model does represent some actual routing protocols
(e.g., BGP). For each destination, routers need to pick an
adjacent edge over which the traffic toward that destination
will be forwarded to (in contrast to source routing which
specifies the whole path). Such protocols are also called “dis-
tance vector routing”, because they maintain a “proximity”
metric for each destination, with packets flowing in the di-
rection of decreased metric, without knowing the structure
of the graph.

Complexity measures. We evaluate our algorithms on
the basis of the following complexity measures [2, 9, 10].

• The approximation ratio measures the quality of the
output as compared to the optimum solution.

• The message congestion is the maximum number of
messages traversing an edge.

• The space complexity is the maximum amount of space
maintained per edge.

• The convergence time is the number of rounds needed
to converge to a desired output.

• The computational complexity is the total number of
computational steps needed in a centralized simulation
of the distributed algorithm.

Even though it is highly undesirable in practice for a va-
riety of reasons, such as security, fault tolerance and confi-
dentiality, our model considers collecting all the information
into a single router and applying a centralized solution, e.g.,
a Linear Program, to be a perfectly legitimate solution. Es-
sentially, a distributed algorithm for a network problem such
as MST, shortest path, or maximum flow must compete with
such a centralized solution. Typically, the centralized solu-
tions for graph problems have a large space or message con-
gestion overhead, and thus are considered inferior to the dis-
tributed solutions with (typically) near-constant space and
message congestion overheads, e.g., [3, 2, 4].

1.2 Passive Commodity Monitoring Problem
We model the network by a directed graph G = (V, E)

where V is the set of nodes while E is the set of links
(routers) between them. There are k commodities each spec-
ified by a source node si, a sink node ti, and a demand
di > 0.

There is a router associated with each network link that
is capable of doing traffic monitoring. The router for a link
e ∈ E needs to decide a frequency xe ≥ 0 of monitoring the
traffic going through e. At this frequency, the monitoring
device of router e makes xe measurement probes per unit
time. We assume that it costs cexe to measure the traf-
fic at frequency xe on link e, where ce > 0 is a constant.
Obviously, if all the routers measure all the flow passing
through them at all times, i.e., xe = 1, then all the flow
gets recorded. However, in this case the effort exerted by
the routers is highly redundant, e.g., the same flow gets
recorded by many routers.

Since the links on a path measure the traffic going through
them independently with respect to each other, the frequen-
cies along a path add up to give the total monitoring fre-
quency on that path.

Monitoring only short paths. Input to the problem is
also an integer L > 0. We assume that each commodity i
routes its flow only along si-ti paths that have hop-length
at most L. Thus only such paths need to be monitored. In
many applications, L is essentially a constant, e.g., L = 1 in
bi-partite case.

Objective. Find minimum-cost set of the monitoring fre-
quencies xe on the links so that each path of at most L hops
from si to ti for each commodity i gets measured at a total
frequency that is at least the demand di.

This problem can be cast as a “covering” linear program
as follows. Let Pi be the set of paths of at most L hops
between si and ti. For a technical reason, we also include
non-simple si-ti paths of hop-length at most L in Pi. Note
that the hop-length of a non-simple path counts edges with
their multiplicities.

min
∑
e∈E

cexe

s.t.
∑
e∈p

xe ≥ di ∀i and p ∈ Pi

xe ≥ 0 ∀ links e ∈ E

(1)

Note that this problem can be thought of as a set cover
problem, with paths being elements and routers (edges) be-
ing sets. The problem with this reduction is that there is
an exponential number of elements to be covered. Aggre-
gating all the paths for a single commodity into a single
commodity “super-element” allows a possibility of a poly-
nomial overhead solution, but does not let us use the set
cover framework in a direct way.

1.3 Maximum Multicommodity Flow Problem
We again model the network by a directed graph G =

(V, E) where each link e has a capacity ce > 0. There are k
commodities each specified by a source node si, a sink node
ti, and a profit di > 0. Routing a unit flow between si and
ti accrues a profit of di.

Flows only along short paths. Input to the problem is
also an integer L > 0. We assume that each commodity i
routes its flow only along si-ti paths that have hop-length
at most L. Again in many practical applications, L is much
smaller than the total number of vertices.

Objective: Route the flows for these commodities so that
the aggregate profit is maximized while the edge-capacities
are satisfied.

Let Pi denote the set of (perhaps non-simple) si-ti paths
of hop-length at most L. We can formulate the maximum
multicommodity flow problem as a “packing” linear program
as follows:

max
∑

i

di

∑
p∈Pi

fp

s.t.
∑

p:e∈p

fp ≤ ce ∀ edges e ∈ E

fp ≥ 0 ∀ paths p ∈ ∪iPi

(2)

This packing formulation has a number of variables that
is exponential in L. However, aggregating the paths for the
ith commodity allows a possibility of a polynomial overhead
solution.

Remark 1.1. The linear programs (1) and (2) are LP
duals of each other.

1.4 Our results
Let n = |V |, m = |E|, and P = nL be an upper bound

on the total number of paths of hop-length at most L. Let
C = maxe ce/ mine ce and D = maxi di/ mini di.

Theorem 1.2 (Main). The algorithms in Sec. 3 and 4
are (1+ε)-approximation algorithms for the passive commod-
ity monitoring (1) and the maximum multicommodity flows
(2) in the Routers model and have the following features:

• The convergence time is

O

(
L3 · log

2(nC/ε)

ε4
· log mCD

ε

)
.

• The space per router is Õ (k · L).

• The messages per router are Õ
(
k · L3

)
.

• The total computation overhead is Õ
(
m · k · L3

)
.

See Figure 1 and subsection 1.5 for a comparison of our
results with existing work. Note that router space and mes-
sages per router are linear in the number of commodities k
and is poly-logarithmic in the network size m. Since there
are k flows going through a router, Ω(k) is a lower bound on
these quantities. Surprisingly, all existing distributed flow
algorithms have either space or message congestion bounds
or convergence bounds above Ω(m). One of our major con-
tribution in this work is to break this barrier. Our secondary
contribution is to develop a solution to PFM problem, which
has been the original motivation for this line of research.
Surprisingly, focusing on the PFM problem, which is the
dual of MCF, enables us to achieve improvements in both
distributed and sequential models for classical maximum flow
algorithms thus improving on best known solutions for MCF
in [7, 8] and [14, 12, 22], respectively, on some graph in-
stances.

1.5 Existing work
Sequential algorithms. Garg-Könemann [14] and Fleis-
cher [12] have developed the best known multicommodity
flow algorithms for the centralized setting. A sequential sim-
ulation of our distributed algorithm is significantly faster
than [14, 12] on graphs with short flow paths (see Figure 1).

Existing Flow algorithms for our model. Multicom-
modity flow algorithms in Routers model are presented in
[7, 8]. Their algorithm cannot be used in our model because
the actual flows sent in this algorithm violate flow preser-
vation at intermediate nodes, accumulating flow excess at
nodal queues. In our model, flows must obey conservation
laws. However, our algorithm dominates this algorithm in
space, times, communication and computational complex-
ities. It is worth pointing out that [7, 8] have additional
fault-tolerance feature, such as statelessness, which is ex-
tremely important feature, that is absent in our solution.

Billboard Flow algorithms. The Billboard model is
used in essentially all of the work on “congestion games”,
where “flow agents” optimize their routes while observing
congestion of the links over the global “billboard” [1, 19, 11,
5]. In this model, there exist distributed solutions to mul-
ticommodity flows such as [11, 6, 5]. The choice between
Billboard versus Routers model for flow optimization is

actually a major architectural decision. Essentially, this is
the choice of using packet routing with all the intelligence
at the routers and “dumb” end-to-end users (flow agents)
versus source routing with “dumb” routers and all the intel-
ligence at the end-to-end users (flow agents). In the Bill-
board model, one assumes that routers are dumb, i.e., each
packet sent by the source carries the full description of the
path, and routers just forward the packet to the next hop.
The routing algorithms for this model are also called “Link-
State”, because they maintain at an end-point (source) of
the flow the database of all the network links, including cur-
rent utilization of that link. Maintaining link state database
at all the flow sources means that utilization of all the links
must be continuously reflooded through the network, result-
ing in a larger maintenance cost.

Just like the Billboard-based flow algorithm in [6], we
use a primal-dual approach. Adapting Billboard-based al-
gorithms to Routers model is un-attractive since it either
increases space complexity or convergence time to Ω(m).
Direct implementation of link-state requires communication
and space overheads of Ω(m) at the sources of the flows.
Indirect implementations using distance vector approaches
slows down the algorithm by Ω(m). In contrast, router-
based algorithms described in this paper require space over-
head of O(k ·L) where k is the number of commodities, and
L is the maximal path length. (In practice, L < 15 on the
Internet.)

2. ALGORITHMS FOR SET-COVER AND
ITS DUAL

In Section 2.1, we first present an algorithmic framework
for computing a (1 + ε) approximation to the fractional
set-cover problem and its dual. Later, in Section 2.2, as
an instance of this framework, we present our distributed
(1 + ε)-approximation algorithm with poly-logarithmic run-
ning time. The framework presented in these sections is
based on the parallel algorithm of Luby and Nissan [16]
for packing/covering linear programs and similar results by
Garg-Könemann [14] and Young [22].

Our novel technical contributions, presented in Sections 3
and 4, are in extending this framework to poly-logarithmic
solutions for our problems in the distributed model, with
only polynomial overhead, and using only local information.

2.1 Algorithmic Framework for Set-cover and
its Dual

In the set cover problem, we have a set U of clients (el-
ements) to be served (covered) and a collection of servers
(sets) S. Each server can serve only some clients, as de-
scribed by a binary relation R ⊂ U×S where tuples (u, S) ∈
R indicates that server (set) S ∈ S can serve (cover) a client
(element) u ∈ U . A server is also associated with a cost
cS ≥ 0 of usage. The objective in the classical fractional set-
cover problem is to pick the servers S to “extents” xS ≥ 0
such that each client u ∈ U is served to a total extent of at
least one:

∑
(u,S)∈R xS ≥ 1 while minimizing the total cost∑

S cSxS . It is formulated as the following “covering” LP.

Problem Reference Rounds Messages Space Computation

MCF [14, 12, 22] Õ (m + k) Õ (m + k) Õ (m + k) Õ (m(m + k))

MCF [6, 5] Õ (m · L) Õ (k · L) Õ (k) Õ
(
m3 · k · L

)
MCF [7, 8] Õ (m · L) Õ (m · k · L) Õ (m · L) Õ

(
m2 · L

)
MCF & PFM [this paper] Õ

(
L3
)

Õ
(
k · L3

)
Õ (k · L) Õ

(
m · k · L3

)
Figure 1: Our result vs. existing work for the Multicommodity flow (MCF) and Passive monitoring (PFM) problems in Routers

model. Õ (·) absorbs factors polynomial in log(mkCD)
ε

. L denotes the maximal path length; L� m in many practical networks.

min
∑
S∈S

cSxS

s.t.
∑

(u,S)∈R

xS ≥ 1 ∀u ∈ U

xS ≥ 0 ∀S ∈ S

(3)

Its dual “packing” linear program is given below.

max
∑
u∈U

yu

s.t.
∑

(u,S)∈R

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U

(4)

The algorithmic framework is given in Figure 2. We use
the following notations: |S| is the number of elements cov-
ered by S, N = |U| is the number of clients to be covered,
and M is the total number of servers. By scaling, we assume
that minS cS = 1 and maxS cS = C.

The algorithm starts by setting all xS to zero. We then
increase the values xS according to certain rules till each
client u0 is covered:

∑
(u0,S)∈R xS ≥ 1. We associate a

“residual requirement” ru > 0 with each client u ∈ U . At
any time, the residual requirement of u ∈ U is given by

ru =
(
B1/ε

)− ∑
(u,S)∈R

xS

(5)

where B = NC/ε.
We increase xS values while always satisfying two impor-

tant rules: “increasing least pricey servers” and “step-size
constraint” as given below.

• Increasing least pricey servers. Define the price
α(S) of a server S as the ratio of its cost to the sum of
current residual requirements of the clients served by
that server:

α(S) :=
cS∑

(u,S)∈R ru
. (6)

Call a server (1 + ε)-least pricey if its price is at most
(1 + ε) times that of the least pricey server:

α(S) ≤ (1 + ε)α where α = min
S′

α(S′). (7)

According to the first rule, at any point in the algo-
rithm, only (1 + ε)-least pricey servers S are allowed
to increase their xS values.

• Step-size constraint. Let ∆xS be the increase in the
xS value of a server S in a step. The second rule re-
quires that the total increase corresponding to servers

serving any fixed client u, such that
∑

(u,S)∈R xS ≤
1 + ε currently, is at most ε2/ logB:∑

(u,S)∈R

∆xS ≤
ε2

logB .

The dual variables yu are also increased as given in Step 3c.
Here ∆ru is the decrease in the requirement of u in this step
and α = minS α(S) as defined in (7). In the end, the algo-
rithm outputs the final xS and yu values to be the fractional
solutions. The main result of this section is as follows.

Lemma 2.1. Assuming that the algorithm in Figure 2 ter-
minates, let its outputs be {xS} and {yu}. Then {xS} forms
a (1 + O(ε))-approximate feasible solution to (3). Also {yu}
forms a (1 + O(ε))-approximate (1 + O(ε))-feasible solution
(i.e.,

∑
(u,S)∈R yu ≤ (1 + O(ε))cS for all S) to (4).

Before proving Lemma 2.1, we prove some important prop-
erties of the above algorithm.

Lemma 2.2. During the algorithm, we have α = minS α(S) ≤
C

B−1/ε where α(S) is the price of S as defined in (6).

Proof. Let u be the last client that got covered com-
pletely. Thus during the algorithm,

∑
(u,S)∈R xS < 1 and

ru > B−1/ε. For any server S such that (u, S) ∈ R, since

cS ≤ C, it is easy to see that α(S) ≤ C/B−1/ε. This com-
pletes the proof.

Call a client u “active” in a particular step if
∑

(u,S)∈R xS ≤
1 + ε. We denote the set of active clients by A.

Lemma 2.3. Once a client stops being active, the fur-
ther increase in yu till the end of the algorithm is less than
ε2/N logB < ε/N .

Proof. The increase in yu is given by ∆yu = α · ∆ru ·
ε/ logB (see Step 3c in Figure 2). Since, from Lemma 2.2,

α ≤ C/B−1/ε while the further decrease in ru is ∆ru ≤ ru <

B−1−1/ε, the proof is complete.

Now we prove Lemma 2.1. Assume that the algorithm in
Figure 2 terminates. It is clear from the stopping condition
that {xS} forms a feasible solution to the primal. To com-
plete the proof we show that the primal value is not much
larger than the dual, i.e.,

∑
S cSxS ≤ (1 + O(ε))

∑
u yu and

that {yu} satisfies
∑

(u,S)∈R yu ≤ (1 + O(ε))cS for all S.

This, in turn, implies near-optimality of the two solutions.

1. Let B = NC/ε.

2. Initialize xS ← 0 for S ∈ S and yu ← 0 for u ∈ U .

3. While ∃ u0 ∈ U such that
∑

(u0,S)∈R

xS < 1 do:

(a) Update

ru =
(
B1/ε

)−∑
(u,S)∈R xS

for u ∈ U , α(S) :=
cS∑

(u,S)∈R ru
for S ∈ S, α = min

S∈S
α(S).

(b) Increase xS values by ∆xS satisfying:

• “increasing least pricey servers” rule:

∆xS > 0 only if α(S) ≤ (1 + ε)α.

• “step-size constraint”: ∀u such that
∑

(u,S)∈R xS ≤ 1 + ε, we have∑
(u,S)∈R

∆xS ≤
ε2

logB .

(c) For all u ∈ U do: Let ∆ru ← ru

(
1− B−

∑
(u,S)∈R ∆xS/ε

)
be the reduction in ru in this step and update

yu ← yu + α ·∆ru ·
ε

logB .

4. Output xS for all S and yu for all u.

Figure 2: An algorithmic framework for the set-cover problem and its dual

Now note that the change in the requirement of a client
u ∈ A in a step satisfies:

∆ru = ru

(
1− B−

∑
(u,S)∈R ∆xS/ε

)
≥ (1− ε)ru ·

logB
ε
·
∑

(u,S)∈R

∆xS (8)

where ∆xS is the increase in the xS values of a server S.
This follows from the step-size constraint (which is satisfied
for active clients A) and the elementary fact that exp(−δ) ≤
1− δ(1− δ) for small δ > 0. Now from (8), we conclude the
following. The total change in

∑
u∈A yu, in a single step is∑

u∈A

∆yu = α · ε

logB ·
∑
u∈A

∆ru

≥ α(1− ε) ·
∑
u∈A

ru

∑
(u,S)∈R

∆xS

= α(1− ε) ·
∑

S

∆xS

∑
u∈A:(u,S)∈R

ru

≥ (1−O(ε))
∑

S

cS∆xS . (9)

The last inequality follows from two observations: (i) “in-
creasing least pricey server” rule implies that ∆xS > 0 only
for the servers S with (1 + ε)α ≥ cS∑

(u,S)∈R ru
, and (ii)

α
∑

u 6∈A:(u,S)∈R ru < ε ≤ εcS . Summing (9) over all the

rounds in the algorithm, we get that the outputs satisfy∑
u yu ≥ (1−O(ε))

∑
S cSxS .

It now remains to prove that the final solution {yu} forms
an approximately feasible solution to the dual program, i.e.,∑

(u,S)∈R yu ≤ (1 + O(ε))cS for all S. To this end, fix a

server S and observe that, in any step, we have∑
u∈A:(u,S)∈R

∆yu = α
∑

u∈A:(u,S)∈R

∆ru ·
ε

logB

≤ ε

logB · cS ·
∑

u∈A:(u,S)∈R ∆ru∑
(u,S)∈R ru

≤ ε

logB · cS ·
∑

u∈A:(u,S)∈R ∆ru∑
u∈A:(u,S)∈R ru

(10)

The first inequality holds since α ≤ cS/
∑

(u,S)∈R ru.

From Lemma 2.3, we know that the increase in yu after
u stops being active is at most ε/N . Thus the total contri-
bution to

∑
(u,S)∈R yu from all clients u after they become

non-active is at most ε ≤ εcS . Thus we can ignore the
clients u once they stop being active. Now

∑
u∈A:(u,S)∈R ru

reduces from |S| to at least B−1−1/ε. Using (10), we now
sum

∑
(u∈A:u,S)∈R ∆yu over all rounds. The right-hand-side

of the sum is at most

(1 + O(ε))
ε

logB · cS ·
∫ x=|S|

x=B−1−1/ε

dx

x

= (1 + O(ε))
ε

logB · cS · log
|S|

B−1−1/ε

where x =
∑

(u,S)∈R ru. This follows from the fact that for

any u ∈ A, we have ∆ru ≤ εru. Simplifying the expression,
we get

(1 + O(ε))
ε

logB · cS · log(|S|B1+1/ε)

≤ (1 + O(ε))
ε

logB · cS · log(B2+1/ε)

≤ (1 + O(ε))(1 + 2ε) · cS .

Thus we conclude that
∑

(u,S)∈R yu is at most (1+O(ε))cS ,

as desired. This completes the proof of Lemma 2.1.

2.2 The Distributed Set-cover algorithm
In this section, we present an algorithm for computing

a (1 + ε) approximation to the cover problem in polyloga-
rithmic running time. Our algorithm is an instance of the
algorithmic framework presented in Section 2.1.

• Let B = NC/ε.

• α← minS
cS
|S| , β ← ε2

(1+2ε) logB , δ ← ε3

MC logB .

Figure 3: Initialization of distributed algorithms for
clients and servers for the cover problem and its dual

• Repeat for T = O
(

logB
ε2

)
phases

1. Repeat for Tphase = O
(

1
β
· log ε

δ logB

)
steps:

Update ru and yu as given in Figure 2.

2. α← α(1 + ε).

Figure 4: Distributed algorithm for client u

• Repeat for T · Tphase steps:

1. If α(S) ≤ (1 + ε)α

Then xS ← max {xS(1 + β), δ}.

Figure 5: Distributed algorithm for server S

The distributed algorithm is given in Figures 3-5. The
algorithm is initialized by setting all xS to zero. However,
we allow an additive increase by δ the first time. Note that
the total cost of this initial assignment is only an ε-fraction of
the optimum. We associate a “residual requirement” ru > 0
with each client u ∈ U as before given in (5).

We prove that the above algorithm is, in fact, an instance
of the framework in Figure 2. As shown in Lemma 2.5,
the algorithm always maintains a lower bound α on α(S) =
cS/

∑
(u,S)∈R ru of any server S. It then iteratively increases

the xS value of all (1 + ε)-least-pricy servers in parallel and
updates the residual requirements of the clients. The main
result of this section is summarized below.

Lemma 2.4. The client-server algorithms in Figures 3-5
compute an (1 + ε)-approximate solution to the linear pro-
gram (3) in the semi-cooperative distributed framework in

O(log2 B
ε4
· log MC

ε
)) parallel steps.

2.3 Proof of Lemma 2.4
Lemma 2.5 (α-invariant). Throughout the algorithm,

we have α ≤ minS α(S) where α(S) = cS∑
(u,S)∈R ru

.

Proof. We prove this by induction on the number of
phases completed. Since initially ru = 1 for all u ∈ U and
α = minS cS/|S|, this invariant is satisfied. Since the val-
ues ru do not increase during the algorithm; and α remains
constant during a phase, it remains to be a lower bound.
Now we show that this invariant continues to hold when we
increase the value of α by a factor of (1 + ε) at the end of
a phase. To argue this, it is enough to prove that no server
satisfies cS∑

(u,S)∈R ru
< α(1 + ε) at the end of a phase, just

before increasing α by a factor (1 + ε).

A phase lasts Tphase = O

(
1

β
· log

ε

δ logB

)
steps. Con-

sider a server S such that

cS ≤ α(1 + ε)
∑

(u,S)∈R

ru (11)

holds in the beginning of a phase. By induction hypothesis,
we know that α

∑
(u,S)∈R ru ≤ cS holds. Now this server

increases its xS value by a multiplicative factor of (1 + β)
in each step as long as (11) continues to hold. Assume, in
order to get a contradiction, that this continues to holds
at the end of this phase. Since the initial xS value is at
least δ, after Tphase steps, the overall increase in xS is at
least ε/ logB. Thus all the ru values such that (u, S) ∈ R
decrease by a factor of at least (1 + ε) during this phase.
This, in turn, contradicts the induction hypothesis. Hence
the proof is complete.

We now prove Lemma 2.4. First of all, it is clear that the
algorithm in Figures 3-5 takes the given number of steps.
Now to show that it actually computes near-optimal so-
lutions, it is enough to argue that this algorithm fits in
the framework given in Figure 2. We already know, from
Lemma 2.5, that the value of α in this algorithm is a lower
bound on minS α(S). Thus we indeed increase the xS value
for only (1+ε)-least pricey servers, satisfying the increasing-
least-pricey-servers rule.

We next show that the algorithm runs while there exists
a client u such that

∑
(u,S)∈R xS < 1. The initial value of

α is minS cS/|S|. The algorithm runs for T = O(logB/ε2)
phases and in each phase, increases α by a factor of (1 + ε).

Thus the final value of α is (B1/ε)θ(1). Since α is a lower
bound on α(S) for any S and 1 ≤ cS ≤ C, we get that∑

(u,S)∈R ru ≤ (B−1/ε)θ(1). From the definition of ru, it fol-

lows that we can ensure, by setting constants appropriately,
that by the end of the algorithm

∑
(u,S)∈R xS ≥ 1 for each

u.
To complete the proof, we now show that the step-size

constraint is also satisfied. Consider a client u such that∑
(u,S)∈R xS ≤ 1+ ε. It is easy to see that the update in xS

values imply that the step-size constraint is satisfied for u:∑
(u,S)∈R

∆xS ≤ β
∑

(u,S)∈R

xS + Mδ ≤ β(1 + ε) + βε ≤ ε2

logB .

3. DISTRIBUTED ALGORITHM FOR THE
PASSIVE COMMODITY MONITORING

The passive commodity monitoring problem is an instance
of the cover problem. Here the links e represent the servers
with costs ce. The paths between source-sink pairs are the
clients. A link e is considered to cover a path p if it lies on the
path: e ∈ p. We denote this by (p, e) ∈ R in our notation.
Let L be an upper bound on the number of links allowed
on any source-sink path that carries a positive flow. By
scaling, we assume that mine ce = 1, maxe ce = C, mini di =
1, and maxi di = D. Let n and m denote the total number
of routers and links in the network. Thus M = m is the
number of servers and N = nL is (an upper bound on)
the number of clients. The main result of this section is
Theorem 1.2.

We now show how to adapt the cover algorithm described
in Figures 3-5 for the passive commodity monitoring. Since
the paths p between the ith source-sink pair need to be cov-
ered to an extent of di, we maintain the following residual-
requirement invariant throughout the algorithm:

rp = (B1/ε)

−

(∑
e∈p

xe

)
/di

(12)

where B = nLC/ε. Since the denominator in the exponent
above can be as large as D, we incur a term of log D in the
number of steps Tphase in a phase. Thus Tphase is now set
as

Tphase = O

(
1

β
log

mCD

ε

)
.

This is needed to ensure that Lemma 2.5 holds.
Since we are aiming for a polynomial computational over-

head per commodity or link agent, we cannot afford to main-
tain rp values for each of the exponentially many paths ex-
plicitly. These values will be represented implicitly by main-
taining the values of xe for each server. In the algorithm (in
Figures 3-5), the only place where the residual requirements
get used is while computing the price α(e) = ce/

∑
(p,e)∈R rp

for a server e. In Section 3.1, we show that the denominator∑
p:e∈p rp =

∑
i

∑
p∈Pi:e∈p rp can be computed in polyno-

mial time for any given link e with the local communication
available to it in our distributed computation model. In our
distributed algorithm, there are no explicit client agents; the
server agents communicate with each other and compute the
solutions.

The proof of Theorem 1.2 is very similar to that of Lemma 2.4
and is omitted. We discuss the message and space overheads
in the following section.

3.1 Computing the aggregate requirement in
polynomial time

The general idea is as follows. To compute
∑

i

∑
p∈Pi:e∈p rp,

we compute
∑

p∈Pi:e∈p rp for each commodity i separately.

Note that
∑

p∈Pi:e∈p rp is the total residual requirements of
paths of commodity i that pass through e.

Each directed path p ∈ Pi from si to ti going through
e = (u, v) can be decomposed into three segments, as p =
p1 ∪ {e} ∪ p2 where p1 is a path from si to u while p2 is a

path from v to ti. Let re′ = (B1/ε)−xe′/di for each link e′.

1. initialize Π0
1(si) = 1, Π0

2(ti) = 1, Π0
1(u) = 0 for

u 6= si, and Π0
2(v) = 0 for v 6= ti.

2. for all 1 ≤ l ≤ L−1 and for all u, v ∈ V , compute
values Πl

1(u), and Πl
2(v) using recurrences

(a) Πl
1(u) =

∑
(w,u)∈E

Πl−1
1 (w) · rw,u

(b) Πl
2(v) =

∑
(v,w)∈E

rv,w ·Πl−1
2 (w)

3. ∀(u, v) ∈ E, compute

L∑
l=1

l−1∑
l1=0

Πl1
1 (u) · ru,v ·Πl−1−l1

2 (v)

Figure 6: A polynomial algorithm based on dynamic
programming for computing

∑
p∈Pi:e∈p rp

We observe that

rp =
∏
e′∈p

re′ =

(∏
e1∈p1

re1

)
· re ·

(∏
e2∈p2

re

)
= rp1 · re · rp2 .

Since L is an upper-bound on the path length, we have∑
p∈Pi:e∈p

rp =
∑

p1.e.p2

rp1 · re · rp2

=

L∑
l=1

l−1∑
l1=0

Πl1
1 (u) · re ·Πl−1−l1

2 (v). (13)

Here we let

Πl1
1 (u) =

∑
|p1|=l1

rp1 and Πl2
2 (v) =

∑
|p2|=l2

rp2 , (14)

where the first sum is over paths p1 of length l1 from si to
u and the second sum is over paths p2 of length l2 from v
to ti.

The dynamic-programming based algorithm for comput-
ing these quantities Πl

j(w) for l ∈ [0, L− 1], j ∈ [1, 2], w ∈ V
is given in Figure 6. This algorithm is similar to computing
the shortest-distance over a semiring in [17]. The correct-
ness of the dynamic program in Figure 6 follows directly
from (13) and (14).

Remark. Note that this dynamic program also adds rp

values for all non-simple si-ti paths of length at most L
that contain edge e. However since Pi contains such paths
and we have fp variables in the primal for such paths as
well, the dynamic program computes the correct aggregate
requirements.

Distributed implementation of the dynamic program
Now, we explain how the dynamic program given in Fig-
ure 6 can be implemented in our distributed model where
each router exchanges messages only with its neighbors in
the network.

Fix a commodity i and an edge e = (u, v). To simplify
the presentation, we assume that the routers are associated
with the vertices w ∈ V . This is without loss of generality,
since we can associate an edge-router with each one of its

end-points. The implementation of the dynamic program
is now simple and natural. The routers w first initialize
the value of Π0

1(w) and Π0
2(w). In lth iteration (1 ≤ l ≤

L−1), each vertex w computes the value of Πl
1(w) and Πl

2(w)
using the recurrence in Figure 6. To accomplish this, it first
fetches the values Πl−1

1 (v) and Πl−1
2 (v) from all its neighbors

v, computes Πl
1(w) and Πl

2(w), and in the next iteration,
communicates these values to its neighbors. In the end of L
iterations, it finally computes the desired expression using
line 3 in Figure 6. It is easy to see that the total number of
messages needed for this implementation is O(m · L3). The
space needed per router is O(L) to store values Πl

.(w) for
0 ≤ l ≤ L−1. Thus over all commodities, the total message
complexity per step is O(m · k · L) and the space needed

per router is O(k · L). Since there are Õ
(
L2
)

steps overall,

the total message complexity is O(m · k · L3). Since each

of the Õ
(
L2
)

steps in the algorithm need O(L) distributed
rounds in the implementation, the overall convergence time
is Õ

(
L3
)
.

4. DISTRIBUTED ALGORITHM FOR THE
MAXIMUM MULTICOMMODITY FLOWS

The maximum throughput multicommodity flows prob-
lem is the dual of the passive commodity monitoring prob-
lem. Thus an approximate solution for the flow problem can
be computed using the framework given in Figure 2. The
clients here correspond to the flow paths p ∈ Pi for each
commodity i and the dual variables fp correspond to the
flows on these paths.

The flow variables are initialized to zero. In each step, the
flow on path p is updated as (see step 3c in Figure 2):

fp ← fp + α ·∆rp ·
ε

logB .

Since we are aiming for polynomial computational overhead,
we cannot afford to maintain the fp variables explicitly. We
instead maintain the value fi(e) :=

∑
p∈Pi:e∈p fp of the total

flow of commodity i through edge e.
Initially we have fi(e) = 0 for all e and i. Note that in a

single step, the increase in fi(e) is given by

∆fi(e) =
∑

p∈Pi:e∈p

∆fp = α · ε

logB ·
∑

p∈Pi:e∈p

∆rp.

Here ∆fp denotes the increase in the flow on path p and ∆rp

is the decrease in the residual requirement of the path p.
Note however that the dynamic program in Figure 6 can be
used to compute

∑
p∈Pi:e∈p rp at any step. Thus, knowing

the values of this quantity before and after the step, their dif-
ference gives

∑
p∈Pi:e∈p ∆rp at this step. Therefore we can

maintain the value of fi(e) for each commodity i during the
algorithm without doing any extra work than that needed
by the passive commodity monitoring algorithm. The fact
that this flow forms a near feasible and near optimal solution
to the maximum throughput multicommodity flow problem
follows from Lemma 2.1.

5. REFERENCES
[1] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos,

T. Wexler, and T. Roughgarden. The price of stability
for network design with fair cost allocation. In FOCS,
2004.

[2] B. Awerbuch. Complexity of network synchronization.
J. of the ACM, 32(4):804–823, Oct. 1985.

[3] B. Awerbuch. Optimal distributed algorithms for
minimum weight spanning tree, counting, leader
election and related problems. In STOC, 1987.

[4] B. Awerbuch and R. G. Gallager. Distributed BFS
algorithms. In FOCS, 1985.

[5] B. Awerbuch and R. Khandekar. Greedy distributed
optimization of multi-commodity flows. In PODC,
2007.

[6] B. Awerbuch, R. Khandekar, and S. Rao. Distributed
algorithms for multicommodity flow problems via
approximate steepest descent framework. In SODA,
2007.

[7] B. Awerbuch and T. Leighton. A simple local-control
approximation algorithm for multicommodity flow. In
FOCS, 1993.

[8] B. Awerbuch and T. Leighton. Improved
approximation algorithms for the multicommodity
flow problem and local competitive routing in
dynamic networks. In STOC, 1994.

[9] B. Awerbuch and D. Peleg. Network synchronization
with polylogarithmic overhead. In FOCS, 1990.

[10] B. Awerbuch and D. Peleg. Sparse partitions. In
FOCS, 1990.

[11] S. Fischer, H. Racke, and B. Vocking. Fast
convergence to wardrop equilibria by adaptive
sampling methods. In STOC, 2006.

[12] L. Fleischer. Approximating fractional
multicommodity flow independent of the number of
commodities. SIAM Journal on Discrete Mathematics,
13:505–520, 2000.

[13] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski,
D. Papagiannaki, and F. Tobagi. Design and
deployment of a passive monitoring infrastructure.
Lecture Notes in Computer Science, 2170:556+, 2001.

[14] N. Garg and J. Könemann. Faster and simpler
algorithms for multicommodity flow and other
fractional packing problems. In FOCS, 1998.

[15] M. Kaart et al. The importance of internet
measurements for internet policy (extended abstract).

[16] M. Luby and N. Nissan. A parallel approximation
algorithm for positive linear programming. In STOC,
1993.

[17] M. Mohri. Semiring frameworks and algorithms for
shortest-distance problems. J. Autom. Lang. Comb.,
7(3):321–350, 2002.

[18] M. Murray and K. Claffy. Measuring the
immeasurable: Global internet measurement
infrastructure. In PAM – A workshop on Passive and
Active Measurements, 2001.

[19] T. Roughgarden. The price of anarchy is independent
of the network topology. In STOC, 2002.

[20] Y. Shavitt and E. Shir. Dimes: let the internet
measure itself. SIGCOMM Comput. Commun. Rev.,
35(5):71–74, 2005.

[21] C. R. Simpson, Jr., and G. F. Riley. Neti@home: A
distributed approach to collecting end-to-end network
performance measurements.

[22] N. E. Young. Sequential and parallel algorithms for
mixed packing and covering. In FOCS, 2001.

