Graph Partitioning using Single Commodity Flows

k
Rohit Khandekar Satish Rao Umesh Vazirani
University of Waterloo, University of California, University of California,
Canada Berkeley Berkeley

rkhandekar@gmail.com

ABSTRACT

‘We show that the sparsest cut in graphs can be approximated within
O(log? n) factor in O(n>/?) time using polylogarithmic single com-
modity max-flow computations. Previous algorithms are based on
multicommodity flows which take time O(n?). Our algorithm it-
eratively employs max-flow computations to embed an expander
flow, thus providing a certificate of expansion. Our technique can
also be extended to yield an O(log?n) (pseudo) approximation
algorithm for the edge-separator problem with a similar running
time.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords

edge-separator, single commodity max-flow, sparse cut, spectral
method

1. INTRODUCTION

Graph partitioning and clustering are fundamental problems that
have been extensively studied both in theory and practice. Heuris-
tics for graph partitioning constitute a central tool for coping with
NP-completeness, and are used in applications of clustering rang-
ing from computer vision, to data analysis, to learning. One version
of graph partitioning is the sparsest cut problem. That is, given a
graph G = (V, E), find aset S C V,|S| < |V|/2 that minimizes
the sparsity of S: E(S, S)/|9].

There are two principal themes in theoretical work on graph par-
titioning. The first is based on spectral methods. The performance
of these methods depends upon the sparsity of the graph: they are

*This work was done when the author was visiting UC Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC’06, May21-23, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

satishr@cs.berkeley.edu

vazirani@cs.berkeley.edu

very fast and have good performance guarantees when the sparsity
is very large [2, 6, 17]. The second theme dates back to the paper
by Leighton and Rao [14] and uses linear programs related to mul-
ticommodity flow to approximate the sparsity to within O(logn).
Until very recently this was the best approximation bound known.

More recently, the spectral and linear programming based ap-
proaches were combined by Arora, Rao, and Vazirani [4] to give
a polynomial time semidefinite programming based algorithm that
produces a cut whose sparsity is within a factor of O(y/logn) of
optimal. The paper also introduced the framework of expander
flows. The basic idea here is that the sparsity of the given graph
G can be closely approximated by finding an expander that can be
embedded into G with minimum congestion. Arora, Hazan, and
Kale [3] gave an efficient multicommodity flow based implemen-
tation using the expander flow framework. They achieved running
time O(n?) for an O(+/Togn) approximation.

In this paper we give a new approach for finding graph separators
that uses single commodity flows. We show how to find a cut whose
sparsity is within an O(log? n) factor of optimal in O(n>/?) time.
While the approximation is worse than previous results, we con-
tinue to get a polylogarithmic approximation and break the O(n?)
multicommodity flow barrier as well as get by the typically slow
convergence rates of spectral methods. Moreover, we achieve this
by computing only polylogarithmic single commodity flows thus
achieving a speedup in theory, and perhaps even more dramatically
in practice.

Finding a sparse cut using max-flow is easy if you can identify
many vertices on each side of a good cut. The difficulty, of course,
is in identifying these vertices. The way around this dilemma starts
with the observation that the spectral method can efficiently find
cuts that do not expand (i.e., constant expansion). Combining this
with the expander flow formalism, our main task is to iteratively
construct an expander that can be embedded in G with small con-
gestion. The key to our algorithm is that once we identify a small
cut in the currently embedded graph, improving its expansion while
maintaining embeddability can be cast as a max-flow problem in
the original graph (G. The point being that now the two sides of
the cut are specified and so the max-flow computation either routes
many edges in G that cross this bad cut in the embedded graph or
failing that it identifies a small cut in G.

To find a non-expanding cut, we give a new algorithm inspired
by the spectral method. We note that we could also have used the
spectral method directly, but this would not yield any running time
improvement over multicommodity based algorithms. We could
also use the algorithm of Spielman-Teng [16]. This would work
but give worse approximation bounds. In fact, our resulting algo-
rithm improves upon the algorithm of Spielman-Teng for finding
balanced cuts.

Algorithm H Output sparsity ‘ Running time ‘
Spectral [2] o'/? n/¢?
Spielman-Teng [16] '3 log® n n/¢>
Leighton-Rao [14] ¢logn n?
Arora-Rao-Vazirani [4] ov/logn poly(n)
Arora-Hazan-Kale [3] d/logn n?
this paper ¢log®n min{n®2,n/¢}

Note: Here ¢ denotes the optimum sparsity and the running times
ignore logarithmic factors. The spectral algorithm only yields a
sparse cut, while the Spielman-Teng algorithm only yields a bal-
anced separator.

Figure 1: Output sparsity and running time comparison of var-
ious algorithms for computing sparse cuts and balanced sepa-
rators.

We summarize our results and previous results with regard to
computing sparse and balanced cuts in Figure 1.

1.1 Heuristics

There is an extensive history of practical heuristics for graph
partitioning. The earliest attempts dating back to the seventies
were based on local search, with the Kernighan-Lin heuristic [11]
achieving the best results in this class. Spectral methods (see for
example [8, 9, 15]), which found widespread use in the eighties,
compute eigenvectors, which are embeddings of the graph onto the
real line. This extra information is often more useful than just the
cut, since it can be easily combined with other criteria in clustering
problems. Another advantage of this approach in practice was the
easy availability of highly optimized code for computing eigenvec-
tors. In the early nineties, the linear programming methods were
shown to find better cuts [13] than Kernighan-Lin and the spec-
tral method. But they were not adopted in practice since they were
slow compared to Kernighan-Lin and did not provide the additional
embedding information contained in the eigenvectors.

In the mid-nineties, a multilevel heuristic embodied in the pack-
age METIS was introduced [10]. This method is very fast and pro-
duces cuts that are almost as good as those obtained by linear pro-
gramming based methods in practice. The heuristic proceeds by
collapsing random edges until the resulting graph is quite small.
It finds a good partition in this collapsed graph, and successively
induce it up to the original graph, using local search. More re-
cently [8] this multilevel approach has been used to speed up spec-
tral methods, thereby obtaining the useful embedding information.
We speculate that the random collapsing process is akin to process
of adding matchings in our algorithm. This connection might pro-
vide further insight into such multilevel heuristics, and perhaps lead
to a performance guarantee for some variant of the basic approach.

Very recently, a combination of spectral methods and single com-
modity flows have been used effectively in experiments [12]. In-
deed, this combination seems to be quite effective for a large range
of graphs — the resulting algorithms are slightly slower than METIS,
but appear to give better cuts. One view of these algorithms is that
they partially implement one iteration of an algorithm like ours, i.e.,
a phase of the spectral algorithm plus a max-flow computation to
isolate a cut. It would be interesting to see if an iterative version of
these methods would improve their performance in practice. The
results of this paper suggest that this might be the case. Addition-

ally, we note that our algorithm produces embeddings of the graph
on the real line.

2. THE SPARSEST CUT PROBLEM

Let G = (V, E,w) be an undirected graph with edge-weights
we > 0. Foracut (S, S) in G, where S = V' \ S), let §(S) denote
the set of edges with exactly one end-point in S and let w(S, S) =
D ees (5) We denote the total weight of such edges. The expansion
(or sparsity) of a cut (S, S) is defined as ¢(S) = ml;"{(‘STS‘%” The
sparsest cut problem is to find a cut with minimum expaflsion. Let
the expansion of G be ¢(G) = min g5 #(5).

We call a graph an expander if its expansion is at least a con-
stant. A comparison method of establishing a lower bound on the
expansion of G is by “embedding” an expander in G with low con-
gestion. More precisely, let H be an undirected graph with edge-
weights ¢y > 0 on the same set of vertices as G. The graph H
can be thought of as an instance of the multicommodity flow prob-
lem in G with a demand cy between the end-points of each edge
f € H. We say that H can be embedded (or routed) in G with
congestion C' if a flow of c; units can be routed in G between the
end-points of f simultaneously for all f € H without violating the
edge-capacities w, by a factor more than C'. Observe that if an ex-
pander can be embedded in G with congestion C, then every cut in
G has expansion at least €2(1/C'). Thus such an embedding can be
thought of as a certificate of a lower bound on the expansion of G.

The main result of the paper is summarized in Theorem 2.1.

THEOREM 2.1. Given an undirected graph G = (V, E, w) with
n vertices and m edges and an expansion parameter o > 0, there
is a randomized algorithm that with high probability* outputs

e cither a cut (S, S) of G with $(S) < o,

e or an expander H on V that can be embedded in G with
congestion at most O((log® n)/a).

Furthermore the algorithm can be implemented in é(m +n¥ 2)
time* using O(log2 n) single commodity max-flow computations.

By doing a binary search on «, we can find a cut with expansion at
most oo and an expander that can be embedded in G with conges-
tion at most O((log n) /) for some a.

3. THE ALGORITHM

At a high level our algorithm may be viewed as iteratively build-
ing an expander H to embed into G with congestion O((log? n) /).
The notion of expander we have to use is special, and we start by
defining it. Let { M1, ..., M:} be a sequence of perfect matchings
on a set of vertices V. The natural ¢-step random walk on V' as-
sociated with this sequence of matchings proceeds as follows: in
step ¢ the particle stays put with probability 1/2 and traverses the
incident matched edge in M; with probability 1/2. The sequence
{Ma,..., M} is mixing if for any starting position of the parti-
cle the probability that the particle reaches any vertex v is at least
1/2n. This definition implies that the union of the matchings in a
mixing sequence forms a graph (in which we give an edge a weight
equal to the number of matchings it appears in) with edge expan-
sion at least 1/2.

We measure the progress of our algorithm by defining a poten-
tial function on a sequence of matchings {Mi, ..., M:}, which

'Throughout the paper, we use the term “high probability” to mean
probability at least 1 — n~¢ for any given constant C' > 0.
20(f) stands for O(fpolylog f)

is a measure of how far from uniform the resulting distribution
of the associated random walk is when starting from a random
vertex. Formally 9 (t) = >_, ,(Pi;(t) — 1/n)?, where P;;(t) is
the probability that a particle that starts at j reaches ¢ in the walk
associated with {M,..., M¢}. Observe that for the empty se-
quence, ¥(0) = n — 1. If (t) < 1/4n? then the sequence
{Ma, ..., M} is mixing. Our algorithm will start with the empty
sequence, and while the sequence is not mixing, it tries to find a
new matching to add to the sequence, which is embeddable in G
with congestion 1/« and which reduces the potential by a factor
of (1 — Q(1/logn)). If it succeeds in doing this, O(log? n) iter-
ations suffice to produce a mixing sequence of matchings. In this
case, the union of the matchings which forms a 1/2-edge expander
can be embedded in G’ with congestion O((log® n)/a). In case the
algorithm does not succeed in some iteration, it outputs a cut in G
with expansion at most a.

We proceed by describing the implementation of an iteration in
this procedure. In more detail, if the current sequence of matchings
is {Mi,..., M}, an iteration proceeds as follows.

1. We find a bisection (S,.S) of V, such that adding any pre-
fect matching M, 1 between S and S to { M, ..., M;} re-
duces the potential function, in expectation, by a factor of 1 —
Q(1/logn). Thatis, E[¢p(t +1)] < (1 —Q(1/logn))y(t).

2. We give a maximum flow based procedure that either

(a) produces a perfect matching M;,1 between S and S
which can be embedded in G with congestion 1/«,

(b) or finds a cut in G of expansion at most a.

The procedure for step 1 is the following natural variant of the
spectral method.

FINDBISECTION:

We choose a random unit n-dimensional vector 7 orthogonal to
1, and compute © = M (M;_1(--- (Mar))). We form S by
choosing the n/2 smallest values of .

Here 1 denotes the vector of all 1s and an n X n matrix

. [172 ifi=jor(i,5) € My,
My (i,) 7{ 0 otherwise,

represents the probability transition matrix of the pth step of the
natural random walk.

To get some intuition about the above procedure consider the
following discrete version (which can also be analyzed): assign to
each vertex an initial weight of +1/n, where the signs are chosen
by the flip of a fair coin. Now average these weights according
to the natural random walk associated with { M7, ..., M, } defined
above. Intuitively, the weights rapidly achieve their average within
each “well-connected” component. These average weights for each
component are typically non-zero (either positive or negative) be-
cause of the random initial weight assignments. Now selecting the
n/2 smallest weights should help separate some of these “well-
connected” components from the rest (say the negative from the
positive). Our actual analysis follows a different line, as is based
on the properties of random projections.

The procedure for Step 2 above is quite standard and is described
in Section 3.2.

3.1 Analysis of FinpBisecTiON

It is tempting to analyze FINDBISECTION by following the evo-
lution of the random vector as matchings are successively applied

to it. The key to our analysis is to lift this process by following
random walks starting from each vertex, and then projecting the
resulting distributions onto the randomly chosen initial vector.

To describe the lifting, consider a random walk from each vertex
J, and recall that P;;(t) is the probability of going from j to 4 in
the natural random walk associated with {M1,..., M:}. In the
lifted process, the vector (Pi1, .. ., Pin) denotes the probability of
ending up at ¢ starting from each vertex. We denote this vector by
P;(t). Observe that the entries in P;(¢) sum up to 1. This follows
by induction since the natural random walk averages the vectors
P;(t — 1) and P;(t — 1) to obtain P;(t) = P;(t) for each (i,5) €
M;.

Next we observe that the vector u produced by FINDBISECTION
on {Mi,..., M} is the projection of the vectors P;(t) onto the
randomly chosen vector r L 1, i.e., u; = P;(t) - r. FINDBISEC-
TION partitions the vertices ¢ into two sets according to whether
the corresponding u;’s are large or small. Thus in any matching re-
specting this partition, if vertices ¢ and j are matched, |u; —u ;| will
tend to be large. Note that u; —u; is the projection of P;(t) — P;(t)
on a random vector 7. Since the vector P;(t) — P;(¢) lies in the
(n — 1)-dimensional space orthogonal to 1 and r is a unit vec-
tor chosen uniformly at random from this space, we have E[|u; —
u;|?] = ||Pi(t) — P;(t)||*/(n — 1). Indeed, using the fact that the
length of a vector has a Gaussian distribution under random projec-
tion, we will show, with high probability, that for any pair of ver-
tices 4, 5, we have || P;(t) — P; (t)||* > |u; —u;|*- (n—1)/Clogn
for a constant C'. Thus for any perfect matching M between S and
S,

—1
() — PP > 2 T
> IR RO 2 ot D -l

(i,j)eM (i,j)eM

We can thus establish the desired bound by noting that the left
hand side above corresponds to the reduction in potential and that
(n=1)>0 jyem Ui = |2 corresponds to the total potential. The
former follows from the fact that the natural random walk averages
the vectors P;(t) and P;(t) to obtain P;(¢t + 1) = P;(t 4+ 1). The
latter follows from the fact that 3", E[|u;|*] is proportional to 9 (t).

We establish the facts used in the above outline in the following
lemmas.

LEMMA 3.1. The reduction in potential for a perfect matching
M is

1 2
5 PR ACER O]

(i,5)eM
LEMMA 3.2. With high probability, for all pairs i, j,

2 (’I’L — 1)
1P:(t) — P;(D)II° > Clogn

2

i — g

for a constant C' > 0.

LEMMA 3.3. Forany perfect matching M that respects the par-
tition found by FINDBISECTION, we have

(n—DE| 3 fui—wl*| = ().

(i,5)eM

The inequality in Lemma 3.2 holds with probability at least 1 —
n~*Y) Therefore these three lemmas together imply that the ex-
pected reduction in the potential in any iteration is £2(1/logn)
fraction of the current potential. This implies that in O (log n) itera-
tions the potential reduces by half with high probability. Thus, with

high probability, in O(log? n) iterations, the potential drops below
1/ 4n? and the union of the matchings gives the desired expander.
We proceed by proving the lemmas above.

PROOF OF LEMMA 3.1. Recall that P;;(¢) denotes the proba-
bility of going from k to ¢ in the natural random walk associated
with {M, ..., M;}. Suppose now that we add a matching M to
this sequence. Let (i,7) € M be a matched edge. If the par-
ticle starting at k is currently present at ¢ (resp. j), it stays put
with probability 1/2 and jumps to j (resp.) with probability
1/2. Thus the resulting probability of reaching ¢ or j is given by
(P (t) + Pjr(t))/2 and the resulting distributions are given by

Pi(t) + P; (1)
R

Recall that the potential is given by ¢ = >, || P; — 1/n||>. Since
for any two vectors u and v, we have |[u|® + [|v]|* — 2||“$2||* =
{ju — v]|?, the reduction in the potential contributed by i and j
where (4, j) € M is given by

SIP) = 1/m) = (Bi(6) = 1/m)|* = S1IP:(0) — (o)

Thus the overall reduction is § >pyem I1Pi(t) — P O O

PROOF OF LEMMA 3.2. In the tth step of the random walk, for
(i,7) € My, the vectors P;(t) and P;(t) both take the average
value (P;(t — 1) + P;(t — 1))/2. By induction, it is easy to see
that the entries in P;(¢) add up to 1. Thus the vectors P;(t) — P;(t)
lie in the (n — 1)-dimensional space orthogonal to 1. Now in the
next iteration, we pick a unit random vector 7 in this space and let
u; = P;(t) - r be the projection of P;(¢) onto r. Clearly u; — u;
denotes the projection of P;(t) — P;(t) onto r. We now use the
following lemma about the random projections.

P=P =

LEMMA 3.4 (GAUSSIAN BEHAVIOR OF PROJECTIONS). Ifv
is a vector of length | in R? and r is a random unit vector in R%,
then

o E[(v"r)?] =1?/d, and
o for x < d/16, we have Pr[(vTr)? > zl?/d] < e=*/4.

By setting z = C'log n for a sufficiently large constant C' > 0, we
get that for any pair ¢, 7,

) _ P 2
P [u? > Clogn. VPO =PI en

n—1
Therefore by union bound, with high probability,
-1)
Pt) - PO > P Ly -2
1P(6) = PO 2 G -l =

holds for all pairs ¢, 5. [

PROOF OF LEMMA 3.3. Since the perfect matching M respects
the partition found by FINDBISECTION, it matches the vertices in
S to those in S. Recall that S is the set of n/2 vertices i with
smallest values of u;. Let 17 be a real number so that u; < n < u;
forany i € S and j € S. We then have

Soolw—wl = Y (=)’ + (- w)?)
(i,5)eM (i,j)EM
=) (w—-n)?
i€V
= Zu?—%]Zui-t-m]Q
eV i€V
>

2
T

The last inequality follows from the fact that >, u; = >, Ps(t) -
r = 17 = 0 which, in turn, is true since the vectors P;(t) add up
to 1 and the random vector r was chosen to be orthogonal to 1.

Now we use Lemma 3.4 for vectors (P;(t) — 1/n) which lie
in the (n — 1)-dimensional space orthogonal to 1. Note that u; =
P;(t)-r = (P;(t)—1/n)-r denotes the projection of (P;(¢t)—1/n)
onto r. Since r is a random unit vector from the space orthogonal
to 1, we have

_) —1/n)*

Bl = 10 =1

Putting the pieces together, we get

E Z |u7;—uj|2 > E Zuf
(ij)EM =%
S IR0~ 1)
n—1
Y(t)
n—1"

as claimed. [

3.2 Finding a Matching or a Cut

To simplify the presentation, we assume that G is unweighted.
We use the following procedure for routing n/2 units of flow be-
tween S and S.

CUTORFLOW:

We form a flow network from G and S as follows: assign each
edge in G a capacity of 1/« (which we assume to be integral),
add a source node with an outgoing unit-capacity arc to each
vertex in S, and add a sink node with an incoming unit-capacity
arc from each vertex in S.

We then find the maximum flow between the source and the
sink. If the flow-value is /2, we produce a matching between
S and S by decomposing the flow into flow-paths in a standard
manner (see, e.g., [1]). If not, we find a minimum cut separat-
ing the source and the sink in the flow network and output the
partition induced on V.

If a maximum flow of value n /2 is found, the procedure finds a
matching between S and S that can be embedded in G with con-
gestion 1 /. If not, the following lemma ensures that the procedure
outputs a cut of expansion at most c.

LEMMA 3.5. If the maximum flow between the source and the
sink has value less than n /2, then the procedure outputs a cut in G
of expansion less than c.

PROOF. If the flow has value less than n/2, by the max-flow
min-cut theorem for single commodity flows, the minimum cut sep-
arating the source and the sink has capacity less than n/2. Let
the number of edges in the cut incident to the source (resp. sink)
be ns (resp. n:). The remaining capacity of the cut is less than
n/2 — ns — ng, and thus uses at most a(n/2 — ns — n:) edges
in the original graph. Moreover, the cut consisting of edges in the
graph separates at least n/2 — n vertices in S from n/2 — n;
vertices in S. The expansion of this cut is at most a(n/2 — ns —
n¢)/ min(n/2 — ns,n/2 — n;) which is at most . [J

3.3 Running time

In the previous sections, we argued that the algorithm terminates
in O(log®n) iterations with high probability. In each iteration,

step 1 is implemented by the procedure FINDBISECTION. FINDBI-
SECTION involves picking a random vector L 1 and computing
u = Mi(Mi_1(--- (Mir))). Multiplication by M, can be done
in linear time simply by averaging the values at 7 and j for each
(i,j) € M,. Thus step 1 can be implemented in O(n) time. In
step 2, we do a single-commodity max-flow computation in a flow
network with O(m) edges. This can be done in O(m?>/?) time us-
ing an algorithm of Goldberg and Rao [7]. They show that a cut
and a flow with values within a factor of (1 + €) of each other can
be computed in time O(m?>/? log(1/e€)). Since we are looking for
an integral flow of value n/2, we can set € = 2(1/n) and still get
an optimum flow and a cut. A decomposition of the flow into flow-
paths can be accomplished in O(m) time using dynamic trees.’
The running time of step 2 is thus O(m®/?). We can reduce the de-
pendence on the number of edges by using a standard sparsification
as a pre-processing step.

THEOREM 3.6 (BENCZUR AND KARGER [5]). Givena graph

G with n vertices and m edges and an error parameter € > 0, there
is a graph G such that

o G has O((nlogn)/€®) edges and

o the value of every cut in G is within (1 £ €) times the value
of the corresponding cut in G.

G can be constructed in O(m log? n) time if G is unweighted and
in O(mlog® n) time if G is weighted.

Since we are interested in an approximate sparsest cut, we can
pre-process G to reduce the number of edges to O(n) while pre-
serving values of all the cuts within a constant factor. This step
takes O(m) time. The overall algorithm can thus be implemented
in O(m + n*/?) time.

Furthermore, if ¢ denotes the expansion of the graph G, the flow-
paths in the max-flow computations will be of length O((log n)/¢)
and the max-flow can be computed in time O(n/®).

4. THE MINIMUM SEPARATOR PROBLEM

Given a weighted graph G = (V, E/, w) on n vertices, the mini-
mum edge-separator problem is to find a cut (S, S) in G such that
IS],[S| > n/3 and w(S, S) = 2_ces(s) We is minimized. In this
section, we show how the techniques developed in Section 3 can be
used to get a O(log? n)-(pseudo-)approximation for this problem
in a similar running time.

We call a cut (S, S) b-balanced if |S|,|S| > bn. Clearly mini-
mizing w(S, S) over 1/3-balanced cuts is, within a constant factor,
w(S,S)
min{|S[,[ST}
the 1/3-balanced cuts. Following is the main theorem of this sec-

tion.

equivalent to minimizing the expansion ¢(S) = over

THEOREM 4.1. Given an undirected graph G = (V, E, w) with
n vertices and m edges, an expansion parameter o« > 0, and a
constant b < 1/2, there is a randomized algorithm that with high
probability outputs

o cither an Q(1/ log? n)-balanced cut (S, S) of G with $(S) <

Q,

31f one wishes to avoid using dynamic trees, the algorithm can be
modified in standard ways such that the total volume of the flow
is linear in the number of edges, in which case a depth-first-search
will decompose the flow quickly.

e ora graph H on'V that can be embedded in G with conges-
tion at most O((log® n)/a) and in which every b-balanced
cut has expansion at least a constant.

Furthermore the algorithm can be implemented in O(m +n¥)
time using O(log® n) single commodity max-flow computations.

The above algorithm can be used iteratively O(log® n) times to
find either a 1/6-balanced cut with expansion at most O(«) or a
graph H on V that can be embedded in G with congestion at most
O((log® n)/c) and in which every 1/3-balanced cut has expansion
at least a constant.

4.1 The algorithm

Our algorithm for the minimum separator problem builds on the
algorithm presented in Section 3. We run that algorithm with ex-
pansion parameter «. If it outputs an expander, this expander sat-
isfies the conditions in Theorem 4.1. Suppose, therefore, that in
step 2 of some iteration ¢, it computes a cut (S, S) with expansion
at most a.. If this cut is (1/Clog® n)-balanced (for some constant
C), we output this cut and stop. If on the other hand, the cut is
not (1/C'log? n)-balanced, we know that the algorithm must have
computed a flow of value at least /2 — n/Clog? n in that iter-
ation. This flow corresponds to a matching M; between S and S
of size at least n/2 — n/C'log® n. We now arbitrarily match the
remaining vertices in S to the remaining vertices S and call this
matching M. We then add the perfect matching M; U M; to our
sequence of prefect matchings and go on to the next iteration. Note
that although the matching M; need not be embeddable in G, its
size is at most n/C log® n.

If the algorithm computes a (1/C log? n)-balanced cut with ex-
pansion at most « in any iteration, we output this cut and stop. Let
us assume, therefore, that the algorithm never outputs such a cut.
Thus after N = O(log®n) iterations, it outputs an expander H
which is the union of the matchings M; U M/ found in iterations
t. Let H' be the union of the matchings M, that are embeddable in
G each with congestion at most 1/«.. Thus H' can be embedded
in G with congestion O((log®n)/a). We now argue that every
b-balanced cut in H’ has constant expansion. Note that H’ can
be augmented with at most Nn/C log® n edges in U, M; to get
an expander H. Since H has Q(n) edges across any b-balanced
cut for a given constant b, such a cut in H’ must already have
Q(n) — Nn/Clog?n edges going across it. If we take C' to be
a sufficiently large constant (depending on b), this quantity can be
made Q(n). Thus every b-balanced cut in H' has a constant expan-
sion.

5. CONCLUSIONS

We presented algorithms for graph partitioning problems that use
single commodity flows. Our algorithms iteratively route flows
across O(log2 n) cuts in the graph and embed an expander with
congestion within O(log? n) times the optimum. In case of the
sparsest cut problem, the union of the flows, in fact, corresponds
to an embedding of a complete graph. Thus it also computes an
O(log? n) approximation to the uniform concurrent multicommod-
ity flows in time é(m + n®/ 2). This approach can also be gen-
eralized to the product multicommodity flows where the demand
between a pair of vertices is the product of the weights of those
vertices.

It will be interesting to see if this approach can yield a (tight)
O(logn) approximation for embedding a complete graph or even
a O(y/log n) approximation algorithm by embedding an arbitrary
expander.

Even more interesting is a possible connection between our al-
gorithm and the random collapsing process that underlies METIS,
the widely used heuristic for graph partitioning. Is it possible to
rigorously analyze a METIS-like heuristic based on the techniques
introduced in this paper?

6. REFERENCES

[1] R. Ahuja, T. Magnati, and J. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Eaglewood
Cliffs, NJ, 1993.

[2] N. Alon and V. Milman. A1, isoperimetric inequalities for
graphs, and superconcentrators. Journal of Combinatorial
Theory, Series B, 38:73-88, 1985.

[3] S. Arora, E. Hazan, and S. Kale. O(+/log n) approximation
to sparsest cut in O(n?) time. In Proceedings, IEEE
Symposium on Foundations of Computer Science, pages
238-247, 2004.

[4] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric
embeddings, and graph partitioning. In Proceedings, ACM
Symposium on Theory of Computing, pages 222-231, 2004.

[5] A. Benczir and D. Karger. Approximating s-t minimum cuts
in O(n?) time. In Proceedings, ACM Symposium on Theory
of Computing, pages 47-55, 1996.

[6] W. Donath and A. J. Hoffman. Lower bounds for partitioning
of graphs. IBM J. Res. Develop., 17:420-425, 1973.

[7] A. Goldberg and S. Rao. Beyond the flow decomposition
barrier. J. ACM, 45:783-797, 1998.

[8] B. Hendrickson and R. Leland. An improved spectral graph
partitioning algorithm for mapping parallel computations.
SIAM J. Sci. Stat. Comput., 16(2):452-469, 1995.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Applications in VLSI
design. In Proc. ACM/IEEE Design Automation Conference,
pages 526-529, 1997.

[10] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20:359 — 392, 1999.

[11] B. Kernighan and S. Lin. An effective heuristic procedure for
partitioning graphs. The Bell System Technical Journal,
pages 291-308, 1970.

[12] K. Lang. Finding good nearly balanced cuts in power law
graphs. Manuscript, 2004.

[13] K. Lang and S. Rao. Finding near-optimal cuts: An empirical
evaluation. In Symposimum on Discrete Algorithms, pages
212-221, 1993.

[14] F. Leighton and S. Rao. Multicommodity max-flow min-cut
theorems and their use in designing approximation
algorithms. J. ACM, 46(6):787-832, 1999.

[15] H. Simon, A. Pothen, and K. P. Liou. Partitioning sparse
matrices with eigenvectors of graphs. SIAM J. Mat. Theory
and Appl., 11(3):430-452, 1990.

[16] D. Spielman and S. Teng. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear
systems. In Proceedings, ACM Symposium on Theory of
Computing, pages 81-90, 2004.

[17] R. Tanner. Explicit concentrators from generalized n-gons.
SIAM J. Alg. Disc. Methods, 5:287-293, 1984.

