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Ranking and Social Choice

Problem: Merge multiple ranked lists in a meaningful manner.

Here is a simple example that brings the difficulty of such a
task.

Individual rank 1 rank 2 rank3
1 a b c

2 b c a

3 c a b
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Ranking and Social Choice

Problem: Merge multiple ranked lists in a meaningful manner.

Here is a simple example that brings the difficulty of such a
task.

Individual rank 1 rank 2 rank3
1 a b c

2 b c a

3 c a b

Is a ranked higher than b?

Is b ranked higher than c?

Is a ranked higher than c?
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Ranking and Social Choice

Problem: Merge multiple ranked lists in a meaningful manner.

Here is a simple example that brings the difficulty of such a
task.

Individual rank 1 rank 2 rank3
1 a b c

2 b c a

3 c a b

Is a ranked higher than b? yes since two people prefer a

Is b ranked higher than c? yes since two people prefer b

Is a ranked higher than c? no since two people prefer c

So, such a task of combining individual rankings to come up
with global ranking might be difficult in general. It would be
great if we could argue this in general.
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Ranking and Social Choice

Problem: Merge multiple ranked lists in a meaningful manner.

Here is a simple example that brings the difficulty of such a
task.

Individual rank 1 rank 2 rank3
1 a b c

2 b c a

3 c a b

Is a ranked higher than b? yes since two people prefer a

Is b ranked higher than c? yes since two people prefer b

Is a ranked higher than c? no since two people prefer c

So, such a task of combining individual rankings to come up
with global ranking might be difficult in general. It would be
great if we could argue this in general.

For such an argument we need to fix the axioms of ranking, or
some basic conditions that a global ranking should satisfy.
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Ranking and Social Choice

Problem: Merge multiple ranked lists in a meaningful manner.

Axioms of ranking: The method of producing a global ranking
should satisfy the following:

Nondictatorship: The algorithm cannot always select one
individual’s ranking as the global ranking.
Unanimity: If every individual prefers a to b, then the global
ranking should prefer a to b.
Independent of irrelevant alternatives: If individuals modify
their rankings but keep the order of a and b unchanged, then
the global order of a and b should not change.

We will argue that it is not possible to satisfy all three axioms
simultaneously (Arrow’s Theorem).

We start with a lemma.
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Ranking and Social Choice
Arrow’s theorem

Problem: Merge multiple ranked lists in a meaningful manner.
Axioms of ranking: The method of producing a global ranking
should satisfy the following:

Nondictatorship: The algorithm cannot always select one
individual’s ranking as the global ranking.
Unanimity: If every individual prefers a to b, then the global
ranking should prefer a to b.
Independent of irrelevant alternatives: If individuals modify their
rankings but keep the order of a and b unchanged, then the global
order of a and b should not change.

We will argue that it is not possible to satisfy all three axioms
simultaneously (Arrow’s Theorem).
We start with a lemma.

Lemma

For any set of rankings in which each individual ranks an item first or
last, a global ranking satisfying the three axioms must put b first or
last.
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Ranking and Social Choice
Arrow’s theorem

Problem: Merge multiple ranked lists in a meaningful manner.
Axioms of ranking: The method of producing a global ranking
should satisfy the following:

Nondictatorship: The algorithm cannot always select one
individual’s ranking as the global ranking.
Unanimity: If every individual prefers a to b, then the global
ranking should prefer a to b.
Independent of irrelevant alternatives: If individuals modify their
rankings but keep the order of a and b unchanged, then the global
order of a and b should not change.

Lemma

For any set of rankings in which each individual ranks an item first or
last, a global ranking satisfying the three axioms must put b first or
last.

Theorem (Arrow’s impossibility theorem)

Any deterministic algorithm for creating a global ranking from
individual rankings of three or more elements in which the global
ranking satisfies unanimity and independence of irrelevant alternatives
is a dictatorship.
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Ranking and Social Choice
Arrow’s theorem

Problem: Merge multiple ranked lists in a meaningful manner.
Axioms of ranking: The method of producing a global ranking
should satisfy the following:

Nondictatorship: The algorithm cannot always select one
individual’s ranking as the global ranking.
Unanimity: If every individual prefers a to b, then the global
ranking should prefer a to b.
Independent of irrelevant alternatives: If individuals modify their
rankings but keep the order of a and b unchanged, then the global
order of a and b should not change.

Theorem (Arrow’s impossibility theorem)

Any deterministic algorithm for creating a global ranking from
individual rankings of three or more elements in which the global
ranking satisfies unanimity and independence of irrelevant alternatives
is a dictatorship.

Example: Borda count

Each item gets points from an individual in reverse order of the
ranking. The global ranking is done based on the total number of
points received.
Give an example in which independence of irrelevant alternatives
fails.
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Ranking and Social Choice
Arrow’s theorem

Problem: Merge multiple ranked lists in a meaningful manner.
Axioms of ranking: The method of producing a global ranking
should satisfy the following:

Nondictatorship: The algorithm cannot always select one
individual’s ranking as the global ranking.
Unanimity: If every individual prefers a to b, then the global
ranking should prefer a to b.
Independent of irrelevant alternatives: If individuals modify their
rankings but keep the order of a and b unchanged, then the global
order of a and b should not change.

Theorem (Arrow’s impossibility theorem)

Any deterministic algorithm for creating a global ranking from
individual rankings of three or more elements in which the global
ranking satisfies unanimity and independence of irrelevant alternatives
is a dictatorship.

Example: Borda count

Each item gets points from an individual in reverse order of the
ranking. The global ranking is done based on the total number of
points received.
Here is an example in which independence of irrelevant alternatives
fails:

Individual Ranking
1 abcd

2 abcd

3 bacd

Table: Individual 3 changing his ranking to bcda, changes the global ranking.
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Compressed Sensing and Sparse Vectors

A signal in the current context is a vector x of length d and a
measurement of signal x is taking the dot product of x with a
known vector ai .
Claim: For uniquely reconstructing x without any assumptions, d
linearly independent measurements are necessary and sufficient.

Given Ax = b, solve for x by computing x = A−1b.

If there are fewer than d measurements and A has rank < d ,
there may be multiple solutions.
Informal claim: If x is sparse with s << d non-zero elements, then
we might be able to reconstruct x with far fewer measurements.
This is popularly known as compressed sensing and has
applications in photography (where it reduces the number of
sensors) and magnetic resonance imaging.
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Sparse vector: A vector x ∈ Rd is said to be s-sparse if it has at
most s ≤ d non-zero elements.
Let us examine the conditions under which Ax = b has a unique
sparse solution. The matrix A is an n × d matrix with n < d .
Claim 1: Suppose there are two s-sparse solutions x1 and x2.
Then x1 − x2 will be a 2s-sparse solution to the homogeneous
system Ax = 0.
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Sparse vector: A vector x ∈ Rd is said to be s-sparse if it has at
most s ≤ d non-zero elements.
Let us examine the conditions under which Ax = b has a unique
sparse solution. The matrix A is an n × d matrix with n < d .
Claim 1: Suppose there are two s-sparse solutions x1 and x2.
Then x1 − x2 will be a 2s-sparse solution to the homogeneous
system Ax = 0.
Claim 2: Existence of a 2s-sparse solution to Ax = 0 implies the
existence of 2s columns of A that are linearly dependent.
Combining claims 1 and 2, we get that if no 2s columns of A are
linearly dependent, then there can only be one s-sparse solutions
to Ax = b.
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Sparse vector: A vector x ∈ Rd is said to be s-sparse if it has at
most s ≤ d non-zero elements.
Let us examine the conditions under which Ax = b has a unique
sparse solution. The matrix A is an n × d matrix with n < d .
Claim 1: Suppose there are two s-sparse solutions x1 and x2.
Then x1 − x2 will be a 2s-sparse solution to the homogeneous
system Ax = 0.
Claim 2: Existence of a 2s-sparse solution to Ax = 0 implies the
existence of 2s columns of A that are linearly dependent.
Combining claims 1 and 2, we get that if no 2s columns of A are
linearly dependent, then there can only be one s-sparse solutions
to Ax = b.
Consider the 2s × d matrix A constructed as follows:

Select each entry of A independently from the standard
Gaussian.

Claim 3: With probability 1, no 2s columns of A constructed
above are linearly dependent.
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Sparse vector: A vector x ∈ Rd is said to be s-sparse if it has at
most s ≤ d non-zero elements.
Let us examine the conditions under which Ax = b has a unique
sparse solution. The matrix A is an n × d matrix with n < d .
Claim 1: Suppose there are two s-sparse solutions x1 and x2.
Then x1 − x2 will be a 2s-sparse solution to the homogeneous
system Ax = 0.
Claim 2: Existence of a 2s-sparse solution to Ax = 0 implies the
existence of 2s columns of A that are linearly dependent.
Combining claims 1 and 2, we get that if no 2s columns of A are
linearly dependent, then there can only be one s-sparse solutions
to Ax = b.
Consider the 2s × d matrix A constructed as follows:

Select each entry of A independently from the standard
Gaussian.

Claim 3: With probability 1, no 2s columns of A constructed
above are linearly dependent.
So, for matrix A constructed above Ax = b has a unique s-sparse
solution.
Question: How do we obtain the s-sparse solution? Think
brute-force.
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Sparse vector: A vector x ∈ Rd is said to be s-sparse if it has at
most s ≤ d non-zero elements.
Let us examine the conditions under which Ax = b has a unique
sparse solution. The matrix A is an n × d matrix with n < d .
Claim 1: Suppose there are two s-sparse solutions x1 and x2.
Then x1 − x2 will be a 2s-sparse solution to the homogeneous
system Ax = 0.
Claim 2: Existence of a 2s-sparse solution to Ax = 0 implies the
existence of 2s columns of A that are linearly dependent.
Combining claims 1 and 2, we get that if no 2s columns of A are
linearly dependent, then there can only be one s-sparse solutions
to Ax = b.
Consider the 2s × d matrix A constructed as follows:

Select each entry of A independently from the standard
Gaussian.

Claim 3: With probability 1, no 2s columns of A constructed
above are linearly dependent.
So, for matrix A constructed above Ax = b has a unique s-sparse
solution.
Question: How do we obtain the s-sparse solution? Think
brute-force.

Try all possible
(
d
s

)
locations for non-zero elements in x and solve

Ax = b. Unfortunately, this takes Ω(d s) time.
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Sparse vector: A vector x ∈ Rd is said to be s-sparse if it has at
most s ≤ d non-zero elements.
Let us examine the conditions under which Ax = b has a unique
sparse solution. The matrix A is an n × d matrix with n < d .
Claim 1: Suppose there are two s-sparse solutions x1 and x2.
Then x1 − x2 will be a 2s-sparse solution to the homogeneous
system Ax = 0.
Claim 2: Existence of a 2s-sparse solution to Ax = 0 implies the
existence of 2s columns of A that are linearly dependent.
Combining claims 1 and 2, we get that if no 2s columns of A are
linearly dependent, then there can only be one s-sparse solutions
to Ax = b.
Consider the 2s × d matrix A constructed as follows:

Select each entry of A independently from the standard
Gaussian.

Claim 3: With probability 1, no 2s columns of A constructed
above are linearly dependent.
So, for matrix A constructed above Ax = b has a unique s-sparse
solution.
Question: How do we obtain the s-sparse solution? Yes in Ω(d s)
time.
Question: Can we find a sparse solution efficiently?
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Finding a sparse solution to Ax = b can be written as the
following program:

minimize ||x||0
subject to: Ax = b

Unfortunately, this is not a convex program. Instead, the next
program is a convex program. In fact, it can written as a linear
program.

minimize ||x||1
subject to: Ax = b

Claim 1: The following linear program is equivalent to the above
program.

minimize
∑
i

ui +
∑
i

vi

subject to: Au− Av = b,u ≥ 0, v ≥ 0
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Finding a sparse solution to Ax = b can be written as the
following program:

minimize ||x||0
subject to: Ax = b

Unfortunately, this is not a convex program. Instead, the next
program is a convex program. In fact, it can written as a linear
program.

minimize ||x||1
subject to: Ax = b

Claim 1: The following linear program is equivalent to the above
program.

minimize
∑
i

ui +
∑
i

vi

subject to: Au− Av = b,u ≥ 0, v ≥ 0

Question: How does solving the above program help in finding a
sparse solution to Ax = b?
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Finding a sparse solution to Ax = b can be written as the
following program:

minimize ||x||0
subject to: Ax = b

Unfortunately, this is not a convex program. Instead, the next
program is a convex program. In fact, it can written as a linear
program.

minimize ||x||1
subject to: Ax = b

Claim 1: The following linear program is equivalent to the above
program.

minimize
∑
i

ui +
∑
i

vi

subject to: Au− Av = b,u ≥ 0, v ≥ 0

Question: How does solving the above program help in finding a
sparse solution to Ax = b?

If A is of a specific form, then the solution to the program gives a
sparse solution.
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Program P:

minimize ||x||1
subject to: Ax = b

Question: How does solving the above program help in finding a
sparse solution to Ax = b?

If A is of a specific form, then the solution to the program gives a
sparse solution.

The following theorem states the conditions for matrix A under
which the solution to P is an s-sparse solution Ax = b.

Theorem

If matrix A has unit-length columns a1, ..., ad and the property that
|aTi aj | <

1
2s for all i 6= j , then if the equation Ax = b has a solution

with at most s non-zero coordinates, this solution is the unique
1-norm solution to Ax = b (i.e., solution to program P).
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Program P:

minimize ||x||1
subject to: Ax = b

Question: How does solving the above program help in finding a
sparse solution to Ax = b?

If A is of a specific form, then the solution to the program gives a
sparse solution.

The following theorem states the conditions for matrix A under
which the solution to P is an s-sparse solution Ax = b.

Theorem

If matrix A has unit-length columns a1, ..., ad and the property that
|aTi aj | <

1
2s for all i 6= j , then if the equation Ax = b has a solution

with at most s non-zero coordinates, this solution is the unique
1-norm solution to Ax = b (i.e., solution to program P).

Such a matrix can be constructed efficiently using concepts
developed in high dimensional geometry. The next theorem
summarises everything.

Theorem

For some absolute constant c, if A has n rows for n ≥ cs2 log d and
each column of A is chosen to be a random unit-length n-dimensional
vector, then with high probability A satisfies the conditions of previous
theorem and therefore if the equation Ax = b has a solution with at
most s non-zero coordinates, this solution is the unique minimum
1-norm solution to Ax = b.
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Compressed Sensing and Sparse Vectors
Unique reconstruction of a space vector

Theorem

If matrix A has unit-length columns a1, ..., ad and the property that
|aTi aj | <

1
2s for all i 6= j , then if the equation Ax = b has a solution

with at most s non-zero coordinates, this solution is the unique
1-norm solution to Ax = b (i.e., solution to program P).

Proof sketch

Claim: Let x0 denote the unique s-sparse solution to Ax = b and
let x1 be a solution of smallest possible 1-norm. Let z = x1 − x0.
Then z = 0.
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End
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