COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

< ≣ ▶

3 N 3

- <u>Problem</u>: Merge multiple ranked lists in a meaningful manner.
- Here is a simple example that brings the difficulty of such a task.

Individual	rank 1	rank 2	rank3
1	а	b	С
2	b	с	а
3	с	а	b

医下子 医下

- <u>Problem</u>: Merge multiple ranked lists in a meaningful manner.
- Here is a simple example that brings the difficulty of such a task.

Individual	rank 1	rank 2	rank3
1	а	b	с
2	b	с	а
3	С	а	b

- Is a ranked higher than b?
- Is b ranked higher than c?
- Is a ranked higher than c?

- <u>Problem</u>: Merge multiple ranked lists in a meaningful manner.
- Here is a simple example that brings the difficulty of such a task.

Individual	rank 1	rank 2	rank3
1	а	b	С
2	b	с	а
3	С	а	b

- Is a ranked higher than b? yes since two people prefer a
- Is b ranked higher than c? yes since two people prefer b
- Is a ranked higher than c? no since two people prefer c
- So, such a task of combining individual rankings to come up with global ranking might be difficult in general. It would be great if we could argue this in general.

- <u>Problem</u>: Merge multiple ranked lists in a meaningful manner.
- Here is a simple example that brings the difficulty of such a task.

Individual	rank 1	rank 2	rank3
1	а	b	С
2	b	с	а
3	С	а	b

- Is a ranked higher than b? yes since two people prefer a
- Is b ranked higher than c? yes since two people prefer b
- Is a ranked higher than c? no since two people prefer c
- So, such a task of combining individual rankings to come up with global ranking might be difficult in general. It would be great if we could argue this in general.
- For such an argument we need to fix the axioms of ranking, or some basic conditions that a global ranking should satisfy.

- <u>Problem</u>: Merge multiple ranked lists in a meaningful manner.
- Axioms of ranking: The method of producing a global ranking should satisfy the following:
 - Nondictatorship: The algorithm cannot always select one individual's ranking as the global ranking.
 - Unanimity: If every individual prefers *a* to *b*, then the global ranking should prefer *a* to *b*.
 - Independent of irrelevant alternatives: If individuals modify their rankings but keep the order of *a* and *b* unchanged, then the global order of *a* and *b* should not change.
- We will argue that it is not possible to satisfy all three axioms simultaneously (Arrow's Theorem).
- We start with a lemma.

ヨト イヨト イヨト

Ranking and Social Choice Arrow's theorem

- <u>Problem</u>: Merge multiple ranked lists in a meaningful manner.
- Axioms of ranking: The method of producing a global ranking should satisfy the following:
 - Nondictatorship: The algorithm cannot always select one individual's ranking as the global ranking.
 - Unanimity: If every individual prefers *a* to *b*, then the global ranking should prefer *a* to *b*.
 - Independent of irrelevant alternatives: If individuals modify their rankings but keep the order of *a* and *b* unchanged, then the global order of *a* and *b* should not change.
- We will argue that it is not possible to satisfy all three axioms simultaneously (Arrow's Theorem).
- We start with a lemma.

Lemma

For any set of rankings in which each individual ranks an item first or last, a global ranking satisfying the three axioms must put b first or last.

Ranking and Social Choice Arrow's theorem

- <u>Problem</u>: Merge multiple ranked lists in a meaningful manner.
- Axioms of ranking: The method of producing a global ranking should satisfy the following:
 - Nondictatorship: The algorithm cannot always select one individual's ranking as the global ranking.
 - Unanimity: If every individual prefers *a* to *b*, then the global ranking should prefer *a* to *b*.
 - Independent of irrelevant alternatives: If individuals modify their rankings but keep the order of *a* and *b* unchanged, then the global order of *a* and *b* should not change.

Lemma

For any set of rankings in which each individual ranks an item first or last, a global ranking satisfying the three axioms must put b first or last.

Theorem (Arrow's impossibility theorem)

Any deterministic algorithm for creating a global ranking from individual rankings of three or more elements in which the global ranking satisfies unanimity and independence of irrelevant alternatives is a dictatorship.

- Problem: Merge multiple ranked lists in a meaningful manner.
- Axioms of ranking: The method of producing a global ranking should satisfy the following:
 - Nondictatorship: The algorithm cannot always select one individual's ranking as the global ranking.
 - Unanimity: If every individual prefers *a* to *b*, then the global ranking should prefer *a* to *b*.
 - Independent of irrelevant alternatives: If individuals modify their rankings but keep the order of *a* and *b* unchanged, then the global order of *a* and *b* should not change.

Theorem (Arrow's impossibility theorem)

Any deterministic algorithm for creating a global ranking from individual rankings of three or more elements in which the global ranking satisfies unanimity and independence of irrelevant alternatives is a dictatorship.

- Example: Borda count
 - Each item gets points from an individual in reverse order of the ranking. The global ranking is done based on the total number of points received.
 - Give an example in which independence of irrelevant alternatives fails.

伺 ト く ヨ ト く ヨ ト

- Problem: Merge multiple ranked lists in a meaningful manner.
- Axioms of ranking: The method of producing a global ranking should satisfy the following:
 - Nondictatorship: The algorithm cannot always select one individual's ranking as the global ranking.
 - Unanimity: If every individual prefers *a* to *b*, then the global ranking should prefer *a* to *b*.
 - Independent of irrelevant alternatives: If individuals modify their rankings but keep the order of a and b unchanged, then the global order of a and b should not change.

Theorem (Arrow's impossibility theorem)

Any deterministic algorithm for creating a global ranking from individual rankings of three or more elements in which the global ranking satisfies unanimity and independence of irrelevant alternatives is a dictatorship.

- Example: Borda count
 - Each item gets points from an individual in reverse order of the ranking. The global ranking is done based on the total number of points received.
 - Here is an example in which independence of irrelevant alternatives fails:

Individual	Ranking	
1	abcd	
2	abcd	
3	bacd	

Table: Individual 3 changing his ranking to bcda, changes the global ranking.

・ 同 ト ・ ヨ ト ・ ヨ ト

- A signal in the current context is a vector x of length d and a measurement of signal x is taking the dot product of x with a known vector a_i.
- <u>Claim</u>: For uniquely reconstructing **x** without any assumptions, *d* linearly independent measurements are necessary and sufficient.

• Given $A\mathbf{x} = \mathbf{b}$, solve for \mathbf{x} by computing $\mathbf{x} = A^{-1}\mathbf{b}$.

- If there are fewer than *d* measurements and *A* has rank < *d*, there may be multiple solutions.
- Informal claim: If x is sparse with s << d non-zero elements, then we might be able to reconstruct x with far fewer measurements.
- This is popularly known as compressed sensing and has applications in photography (where it reduces the number of sensors) and magnetic resonance imaging.

- Sparse vector: A vector $\mathbf{x} \in \mathbb{R}^d$ is said to be *s*-sparse if it has at most $s \leq d$ non-zero elements.
- Let us examine the conditions under which $A\mathbf{x} = \mathbf{b}$ has a unique sparse solution. The matrix A is an $n \times d$ matrix with n < d.
- <u>Claim 1</u>: Suppose there are two *s*-sparse solutions \mathbf{x}_1 and \mathbf{x}_2 . Then $\mathbf{x}_1 - \mathbf{x}_2$ will be a 2*s*-sparse solution to the homogeneous system $A\mathbf{x} = \mathbf{0}$.

- Sparse vector: A vector $\mathbf{x} \in \mathbb{R}^d$ is said to be *s*-sparse if it has at most $s \leq d$ non-zero elements.
- Let us examine the conditions under which $A\mathbf{x} = \mathbf{b}$ has a unique sparse solution. The matrix A is an $n \times d$ matrix with n < d.
- <u>Claim 1</u>: Suppose there are two *s*-sparse solutions \mathbf{x}_1 and \mathbf{x}_2 . Then $\mathbf{x}_1 - \mathbf{x}_2$ will be a 2*s*-sparse solution to the homogeneous system $A\mathbf{x} = \mathbf{0}$.
- <u>Claim 2</u>: Existence of a 2*s*-sparse solution to $A\mathbf{x} = \mathbf{0}$ implies the existence of 2*s* columns of *A* that are linearly dependent.
- Combining claims 1 and 2, we get that if no 2s columns of A are linearly dependent, then there can only be one s-sparse solutions to Ax = b.

- Sparse vector: A vector $\mathbf{x} \in \mathbb{R}^d$ is said to be *s*-sparse if it has at most $s \leq d$ non-zero elements.
- Let us examine the conditions under which $A\mathbf{x} = \mathbf{b}$ has a unique sparse solution. The matrix A is an $n \times d$ matrix with n < d.
- <u>Claim 1</u>: Suppose there are two *s*-sparse solutions \mathbf{x}_1 and \mathbf{x}_2 . Then $\mathbf{x}_1 - \mathbf{x}_2$ will be a 2*s*-sparse solution to the homogeneous system $A\mathbf{x} = \mathbf{0}$.
- <u>Claim 2</u>: Existence of a 2*s*-sparse solution to $A\mathbf{x} = \mathbf{0}$ implies the existence of 2*s* columns of *A* that are linearly dependent.
- Combining claims 1 and 2, we get that if no 2s columns of A are linearly dependent, then there can only be one s-sparse solutions to Ax = b.
- Consider the 2s × d matrix A constructed as follows: Select each entry of A independently from the standard Gaussian.
- <u>Claim 3</u>: With probability 1, no 2*s* columns of *A* constructed above are linearly dependent.

- Sparse vector: A vector $\mathbf{x} \in \mathbb{R}^d$ is said to be *s*-sparse if it has at most $s \leq d$ non-zero elements.
- Let us examine the conditions under which $A\mathbf{x} = \mathbf{b}$ has a unique sparse solution. The matrix A is an $n \times d$ matrix with n < d.
- <u>Claim 1</u>: Suppose there are two *s*-sparse solutions x_1 and x_2 . Then $x_1 - x_2$ will be a 2*s*-sparse solution to the homogeneous system Ax = 0.
- <u>Claim 2</u>: Existence of a 2*s*-sparse solution to $A\mathbf{x} = \mathbf{0}$ implies the existence of 2*s* columns of *A* that are linearly dependent.
- Combining claims 1 and 2, we get that if no 2s columns of A are linearly dependent, then there can only be one s-sparse solutions to Ax = b.
- Consider the 2s × d matrix A constructed as follows: Select each entry of A independently from the standard Gaussian.
- <u>Claim 3</u>: With probability 1, no 2*s* columns of *A* constructed above are linearly dependent.
- So, for matrix A constructed above $A\mathbf{x} = \mathbf{b}$ has a unique s-sparse solution.
- Question: How do we obtain the *s*-sparse solution? Think brute-force.

Unique reconstruction of a space vector

- Sparse vector: A vector $\mathbf{x} \in \mathbb{R}^d$ is said to be *s*-sparse if it has at most $s \leq d$ non-zero elements.
- Let us examine the conditions under which $A\mathbf{x} = \mathbf{b}$ has a unique sparse solution. The matrix A is an $n \times d$ matrix with n < d.
- Claim 1: Suppose there are two s-sparse solutions x_1 and x_2 . Then $x_1 - x_2$ will be a 2s-sparse solution to the homogeneous system Ax = 0.
- <u>Claim 2</u>: Existence of a 2*s*-sparse solution to $A\mathbf{x} = \mathbf{0}$ implies the existence of 2*s* columns of *A* that are linearly dependent.
- Combining claims 1 and 2, we get that if no 2s columns of A are linearly dependent, then there can only be one s-sparse solutions to Ax = b.
- Consider the $2s \times d$ matrix A constructed as follows:

Select each entry of A independently from the standard Gaussian.

- <u>Claim 3</u>: With probability 1, no 2*s* columns of *A* constructed above are linearly dependent.
- So, for matrix A constructed above $A\mathbf{x} = \mathbf{b}$ has a unique *s*-sparse solution.
- Question: How do we obtain the *s*-sparse solution? Think brute-force.
 - Try all possible $\binom{d}{s}$ locations for non-zero elements in **x** and solve $A\mathbf{x} = \mathbf{b}$. Unfortunately, this takes $\Omega(d^s)$ time.

ヨト イヨト イヨト

- Sparse vector: A vector $\mathbf{x} \in \mathbb{R}^d$ is said to be *s*-sparse if it has at most $s \leq d$ non-zero elements.
- Let us examine the conditions under which $A\mathbf{x} = \mathbf{b}$ has a unique sparse solution. The matrix A is an $n \times d$ matrix with n < d.
- <u>Claim 1</u>: Suppose there are two *s*-sparse solutions \mathbf{x}_1 and \mathbf{x}_2 . Then $\mathbf{x}_1 - \mathbf{x}_2$ will be a 2*s*-sparse solution to the homogeneous system $A\mathbf{x} = \mathbf{0}$.
- <u>Claim 2</u>: Existence of a 2*s*-sparse solution to $A\mathbf{x} = \mathbf{0}$ implies the existence of 2*s* columns of *A* that are linearly dependent.
- Combining claims 1 and 2, we get that if no 2s columns of A are linearly dependent, then there can only be one s-sparse solutions to Ax = b.
- Consider the 2s × d matrix A constructed as follows: Select each entry of A independently from the standard Gaussian.
- <u>Claim 3</u>: With probability 1, no 2s columns of A constructed above are linearly dependent.
- So, for matrix A constructed above $A\mathbf{x} = \mathbf{b}$ has a unique *s*-sparse solution.
- Question: How do we obtain the s-sparse solution? Yes in $\Omega(d^s)$ time.
- Question: Can we find a sparse solution efficiently?

Unique reconstruction of a space vector

• Finding a sparse solution to $A\mathbf{x} = \mathbf{b}$ can be written as the following program:

```
minimize ||\mathbf{x}||_0
subject to: A\mathbf{x} = \mathbf{b}
```

 Unfortunately, this is not a convex program. Instead, the next program is a convex program. In fact, it can written as a linear program.

> minimize $||\mathbf{x}||_1$ subject to: $A\mathbf{x} = \mathbf{b}$

• <u>Claim 1</u>: The following linear program is equivalent to the above program.

minimize
$$\sum_{i} u_{i} + \sum_{i} v_{i}$$

subject to: $A\mathbf{u} - A\mathbf{v} = \mathbf{b}, \mathbf{u} \ge 0, \mathbf{v} \ge 0$

Unique reconstruction of a space vector

• Finding a sparse solution to $A\mathbf{x} = \mathbf{b}$ can be written as the following program:

```
\begin{array}{l} \text{minimize } || \boldsymbol{x} ||_0 \\ \text{subject to: } \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \end{array}
```

 Unfortunately, this is not a convex program. Instead, the next program is a convex program. In fact, it can written as a linear program.

> minimize $||\mathbf{x}||_1$ subject to: $A\mathbf{x} = \mathbf{b}$

<u>Claim 1</u>: The following linear program is equivalent to the above program.

minimize
$$\sum_{i} u_{i} + \sum_{i} v_{i}$$
subject to: $A\mathbf{u} - A\mathbf{v} = \mathbf{b}, \mathbf{u} \ge 0, \mathbf{v} \ge 0$

• Question: How does solving the above program help in finding a sparse solution to $A\mathbf{x} = \mathbf{b}$?

Unique reconstruction of a space vector

• Finding a sparse solution to $A\mathbf{x} = \mathbf{b}$ can be written as the following program:

 $\begin{array}{l} \text{minimize } ||\mathbf{x}||_0\\ \text{subject to: } A\mathbf{x} = \mathbf{b} \end{array}$

 Unfortunately, this is not a convex program. Instead, the next program is a convex program. In fact, it can written as a linear program.

> minimize $||\mathbf{x}||_1$ subject to: $A\mathbf{x} = \mathbf{b}$

<u>Claim 1</u>: The following linear program is equivalent to the above program.

minimize
$$\sum_{i} u_{i} + \sum_{i} v_{i}$$
subject to: $A\mathbf{u} - A\mathbf{v} = \mathbf{b}, \mathbf{u} \ge 0, \mathbf{v} \ge 0$

- <u>Question</u>: How does solving the above program help in finding a sparse solution to $A\mathbf{x} = \mathbf{b}$?
 - If A is of a specific form, then the solution to the program gives a sparse solution.

伺 ト く ヨ ト く ヨ ト

Unique reconstruction of a space vector

• Program **P**:

minimize $||\mathbf{x}||_1$ subject to: $A\mathbf{x} = \mathbf{b}$

- Question: How does solving the above program help in finding a sparse solution to $A\mathbf{x} = \mathbf{b}$?
 - If A is of a specific form, then the solution to the program gives a sparse solution.
- The following theorem states the conditions for matrix A under which the solution to **P** is an *s*-sparse solution $A\mathbf{x} = \mathbf{b}$.

Theorem

If matrix A has unit-length columns $\mathbf{a}_1, ..., \mathbf{a}_d$ and the property that $|\mathbf{a}_i^T \mathbf{a}_j| < \frac{1}{2s}$ for all $i \neq j$, then if the equation $A\mathbf{x} = \mathbf{b}$ has a solution with at most s non-zero coordinates, this solution is the unique 1-norm solution to $A\mathbf{x} = \mathbf{b}$ (i.e., solution to program **P**).

Unique reconstruction of a space vector

Program P:

minimize $||\mathbf{x}||_1$ subject to: $A\mathbf{x} = \mathbf{b}$

- <u>Question</u>: How does solving the above program help in finding a sparse solution to $A\mathbf{x} = \mathbf{b}$?
 - If A is of a specific form, then the solution to the program gives a sparse solution.
- The following theorem states the conditions for matrix A under which the solution to P is an s-sparse solution Ax = b.

Fheorem

If matrix A has unit-length columns $\mathbf{a}_1, ..., \mathbf{a}_d$ and the property that $|\mathbf{a}_i^T \mathbf{a}_j| < \frac{1}{2\epsilon}$ for all $i \neq j$, then if the equation $A\mathbf{x} = \mathbf{b}$ has a solution with at most s non-zero coordinates, this solution is the unique 1-norm solution to $A\mathbf{x} = \mathbf{b}$ (i.e., solution to program **P**).

 Such a matrix can be constructed efficiently using concepts developed in high dimensional geometry. The next theorem summarises everything.

Theorem

For some absolute constant c, if A has n rows for $n \geq cs^2 \log d$ and each column of A is chosen to be a random unit-length n-dimensional vector, then with high probability A satisfies the conditions of previous theorem and therefore if the equation $A {\bf x} = {\bf b}$ has a solution with at most s non-zero coordinates, this solution is the unique minimum 1-norm solution to $A {\bf x} = {\bf b}$.

伺 ト イヨト イヨト

Unique reconstruction of a space vector

Theorem

If matrix A has unit-length columns $\mathbf{a}_1, ..., \mathbf{a}_d$ and the property that $|\mathbf{a}_i^T \mathbf{a}_j| < \frac{1}{2s}$ for all $i \neq j$, then if the equation $A\mathbf{x} = \mathbf{b}$ has a solution with at most s non-zero coordinates, this solution is the unique 1-norm solution to $A\mathbf{x} = \mathbf{b}$ (i.e., solution to program **P**).

Proof sketch

• <u>Claim</u>: Let \mathbf{x}_0 denote the unique *s*-sparse solution to $A\mathbf{x} = \mathbf{b}$ and let \mathbf{x}_1 be a solution of smallest possible 1-norm. Let $\mathbf{z} = \mathbf{x}_1 - \mathbf{x}_0$. Then $\mathbf{z} = \mathbf{0}$.

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

・ロト ・回ト ・ヨト ・ヨト

Ξ