Coresets for k-Means and k-Median Clustering and their Applications
 SARIEL HAR-PELED SOHAM MAZUMDAR

Tushar Marda | 2012CS10259 | COL870

Introduction

This paper discusses the construction of (k, ε)-coresets for the k-means and k-median clustering problems for a set of n points in d-dimensional space.

Definitions

- For a point set X, and a point p, both in \mathbb{R}^{d}, let $\boldsymbol{d}(p, X)=\min _{x \in X}\|x p\|$ denote the distance of p from X.
- For a weighted point set P with points from \mathbb{R}^{d}, with a weight function $w: P \rightarrow \mathbb{Z}^{+}$and any point set C, we define $v_{c}(P)=\Sigma_{p \in P} w(p) \boldsymbol{d}(p, C)$ as the price of the k-median clustering provided by C.
- Let $v_{o p t}(P, k)=\min _{C \subseteq \mathcal{R}^{d},|C|=k} v_{C}(P)$ denote the price of optimal k-median clustering for P.
- Similarly, $\mu_{C}(P)=\Sigma_{p \in P} w(p)(\boldsymbol{d}(p, C))^{2}$ denotes the price of the k-means clustering of P provided by C, and $\mu_{\text {opt }}(P, k)=\min _{C \subseteq \mathcal{R}^{d},|C|=k} \mu_{C}(P)$ denotes the price of the optimal k-means clustering for P.
- $\quad R_{\text {opt }}^{v}(P, k)=\frac{v_{\text {opt }}(P, k)}{|P|}$ denotes the average radius of P, and $R_{\text {opt }}^{\mu}(P, k)=\sqrt{\frac{\mu_{\text {opt }}(P, k)}{|P|}}$ is the average means radius of P.
- For a weighted point set $P \subseteq \mathbb{R}^{d}$, a weighted set $S \subseteq \mathbb{R}^{d}$ is a (k, ϵ)-coreset of P for the k median clustering, if for any set C of k points in \mathbb{R}^{d}, the following relation holds true $(1-\epsilon) v_{C}(P) \leq v_{C}(S) \leq(1+\epsilon) v_{C}(P)$.
- Similarly, $S \subseteq \mathbb{R}^{d}$ is a (k, ϵ)-coreset of P for the k-means clustering, if for any $C \subseteq \mathbb{R}^{d}$, we have $(1-\epsilon) \mu_{C}(P) \leq \mu_{C}(S) \leq(1+\epsilon) \mu_{C}(P)$.

Coreset for k-Median

Let P be a set of n points in \mathbb{R}^{d}, and $A=\left\{x_{1}, \ldots, x_{m}\right\}$ be a point set, such that $v_{A}(P) \leq c v_{o p t}(P, k)$, where c is a constant. Let P_{i} be the points of P having x_{i} as their nearest neighbor in A, for $i=1, \ldots, m$. Let $R=\frac{v_{A}(P)}{c n}$. For any $p \in P_{i}$, we have $\left\|p x_{i}\right\| \leq v_{A}(P)=c n R$ for $i=1, \ldots, m$. Now, we construct an exponential grid around each x_{i} as follows. Let $Q_{i, j}$ be an axis parallel square with side length $2 R 2^{j}$ starting from $j=0$ centered at x_{i}. Since $\left\|p x_{i}\right\| \leq c n R, \max j=\max \left\lceil\lg \left(\frac{\left\|p x_{i}\right\|}{2 R}\right)\right\rceil=\left\lceil\lg \left(\frac{c n}{2}\right)\right]$. So, $j \leq M$ where $M=\left\lceil\left.\lg \left(\frac{c n}{2}\right) \right\rvert\,\right.$. Next, let $V_{i, 0}=Q_{i, 0}$, and $V_{i, j}=Q_{i, j} \backslash Q_{i, j-1}$, for $j=1, \ldots, M$. Partition $V_{i, j}$ into a grid with side length $r_{j}=\frac{\epsilon \mathrm{R}^{\mathrm{j}}}{10 \mathrm{~cd}}$, and let G_{i} be the resultant exponential grid for $V_{i, 0}, \ldots, V_{i, M}$. Next, for every point in P_{i}, compute the grid cell in G_{i} that contains it. For every non-empty grid cell in G_{i}, pick an
arbitrary point of P_{i} inside it as the representative of all the points inside that cell, and set its weight equal to the number of points of P_{i} inside that cell. Let the resultant set be S_{i} for $i=1, \ldots, m$, and let $S=\bigcup_{i} S_{i}$. Then, S is a (k, ϵ)-coreset of P for the k-median clustering.

SIZE OF CORESET

Every cell in G_{i} contributes at most one point to S_{i}, so $\left|S_{i}\right| \leq\left|G_{i}\right|=\sum_{j}\left|V_{i, j}\right|$. To calculate this value-

$$
\begin{gathered}
\left|V_{i, 0}\right|=\left(\frac{2 R}{r_{0}}\right)^{d}=2^{d}\left(\frac{10 c d}{\epsilon}\right)^{d} \\
\left|V_{i, j}\right|=\left(\frac{2 R 2^{j}}{r_{j}}\right)^{d}-\left(\frac{2 R 2^{j-1}}{r_{j}}\right)^{d}=\left(2^{d}-1\right)\left(\frac{R 2^{j}}{\epsilon R 2^{j}} \frac{d}{10 c d}\right)^{d}=\left(2^{d}-1\right)\left(\frac{10 c d}{\epsilon}\right)^{d} j=1, \ldots, M \\
\left|G_{i}\right|=\left(M\left(2^{d}-1\right)+2^{d}\right)\left(\frac{10 c d}{\epsilon}\right)^{d}=O\left(M \epsilon^{-d}\right)=O\left(\lg (n) \epsilon^{-d}\right) \\
|\boldsymbol{S}|=\sum_{i}\left|\boldsymbol{S}_{\boldsymbol{i}}\right|=\boldsymbol{O}\left(|\boldsymbol{A}| \lg (\boldsymbol{n}) \boldsymbol{\epsilon}^{-d}\right)
\end{gathered}
$$

PROOF OF CORRECTNESS

Let Y be an arbitrary set of k points in \mathbb{R}^{d}. We need to show that $(1-\epsilon) \nu_{Y}(P) \leq v_{Y}(S) \leq(1+\epsilon) v_{Y}(P)$ or,

$$
\mathrm{E}=\left|v_{Y}(P)-v_{Y}(S)\right| \leq \epsilon v_{Y}(P)
$$

For any $p \in P_{i}$, let p^{\prime} denote the image of p in S_{i}, that is, the point in P_{i} that was chosen as the representative of all points inside the same cell of G_{i} as p.

Lemma 1: $\boldsymbol{d}(p, Y) \leq\left\|p p^{\prime}\right\|+\boldsymbol{d}\left(p^{\prime}, Y\right)$ and $\boldsymbol{d}\left(p^{\prime}, Y\right) \leq\left\|p p^{\prime}\right\|+\boldsymbol{d}(p, Y)$
Proof: Let $\alpha, \beta \in Y$ such that α is the closest point to p in Y and β be the closest point to p^{\prime} in Y. So, $\boldsymbol{d}(p, Y)=\|p \alpha\|$ and $\boldsymbol{d}\left(p^{\prime}, Y\right)=\left\|p^{\prime} \beta\right\|$. For contradiction, let $\boldsymbol{d}(p, Y)>\left\|p p^{\prime}\right\|+\boldsymbol{d}\left(p^{\prime}, Y\right)$. Now consider the triangle formed by p, p^{\prime} and β. By triangle inequality, $\|p \beta\| \leq\left\|p p^{\prime}\right\|+\left\|p^{\prime} \beta\right\|$. Or,

$$
\|p \beta\| \leq\left\|p p^{\prime}\right\|+\boldsymbol{d}\left(p^{\prime}, Y\right)<\boldsymbol{d}(p, Y)=\|p \alpha\|
$$

As $\|p \beta\|<\|p \alpha\|$, and $\boldsymbol{d}(p, Y)=\min _{y \in Y}\|p y\|$, hence $\|p \alpha\| \neq \boldsymbol{d}(p, Y)$.
So, using proof by contradiction, $\boldsymbol{d}(p, Y) \leq\left\|p p^{\prime}\right\|+\boldsymbol{d}\left(p^{\prime}, Y\right)$ and $\boldsymbol{d}\left(p^{\prime}, Y\right) \leq\left\|p p^{\prime}\right\|+\boldsymbol{d}(p, Y)$.
Using the above lemma, we get $\left|\boldsymbol{d}(p, Y)-\boldsymbol{d}\left(p^{\prime}, Y\right)\right| \leq\left\|p p^{\prime}\right\|$. Now,

$$
\mathrm{E}=\left|v_{Y}(P)-v_{Y}(S)\right|=\sum_{p \in P}\left|\boldsymbol{d}(p, Y)-\boldsymbol{d}\left(p^{\prime}, Y\right)\right| \leq \sum_{p \in P}\left\|p p^{\prime}\right\|
$$

For all the points p that lie in $Q_{i, 0},\left\|p p^{\prime}\right\| \leq r_{0} \sqrt{d}=\frac{\epsilon R}{10 c \sqrt{d}} \leq \frac{\epsilon}{10 c} R$
So, for all points p such that $\boldsymbol{d}(p, A) \leq R,\left\|p p^{\prime}\right\| \leq \frac{\epsilon}{10 c} R$, since all such points will lie in $Q_{i, 0}$.

And for all points $p \in Q_{i, 0}$ such that $\boldsymbol{d}(p, A)>R,\left\|p p^{\prime}\right\| \leq \frac{\epsilon}{10 c} \boldsymbol{d}(p, A)$
For all the points p that lie in $V_{i, j}(j=1, \ldots, M), \boldsymbol{d}(p, A) \geq 2 R 2^{j-1}$ (as they are outside $Q_{i, j-1}$). So,

$$
\left\|p p^{\prime}\right\| \leq r_{j} \sqrt{d}=\frac{\epsilon}{10 c \sqrt{d}} R 2^{j} \leq \frac{\epsilon}{10 c} \boldsymbol{d}(p, A)
$$

Now,

$$
\begin{gathered}
\sum_{p \in P}\left\|p p^{\prime}\right\| \leq \sum_{i}\left(\sum_{p \in P, \boldsymbol{d}(p, A) \leq R}\left(\frac{\epsilon}{10 c} R\right)+\sum_{p \in P, \boldsymbol{d}(p, A)>R}\left(\frac{\epsilon}{10 c} \boldsymbol{d}(p, A)\right)\right) \\
\leq \frac{\epsilon}{10 c} n R+\frac{\epsilon}{10 c} \sum_{p \in P} \boldsymbol{d}(p, A) \leq \frac{2 \epsilon}{10 c} v_{A}(P) \leq \epsilon v_{o p t}(P, k) \leq \epsilon v_{Y}(P) \\
\left|v_{Y}(P)-v_{Y}(S)\right| \leq \epsilon v_{Y}(P)
\end{gathered}
$$

Hence, S is a (k, ϵ)-coreset of P. Also, the above algorithm can be easily extended for weighted point sets.

Theorem: Given point sets P and A with n and m points, respectively, such that $v_{A}(P) \leq c v_{o p t}(P, k)$, where c is a constant, one can compute a weighted set S which is a (k, ϵ)-coreset for P under k-median clustering, and $|S|=O\left(m \epsilon^{-d} \log (n)\right)$. If P is weighted, then $|S|=O\left(m \epsilon^{-d} \log (W)\right)$, where W is the total weight of P.

Coreset for k-Means

The construction of the coreset is the same as that for k-median but for a few changes. Let P be a set of n points in \mathbb{R}^{d}, and $A=\left\{x_{1}, \ldots, x_{m}\right\}$ be a point set such that $\mu_{A}(P) \leq c \mu_{o p t}(P, k)$. For constructing a k-means coreset, let $R=\sqrt{\frac{\mu_{A}(P)}{c n}}$. For any point $p \in P_{i},\left\|p x_{i}\right\|^{2} \leq \mu_{A}(P)=\sqrt{c n} R$. The set S constructed using this R and the method described earlier is a (k, ϵ)-coreset of P for k-means clustering.

PROOF OF CORRECTNESS

Consider an arbitrary set Y of k points in \mathbb{R}^{d}. Let p^{\prime} be the image of p in S. Using Lemma 1, we get-

$$
\left|\boldsymbol{d}(p, Y)-\boldsymbol{d}\left(p^{\prime}, Y\right)\right| \leq\left\|p p^{\prime}\right\|
$$

And,

$$
\boldsymbol{d}(p, Y)+\boldsymbol{d}\left(p^{\prime}, Y\right) \leq 2 \boldsymbol{d}(p, Y)+\left\|p p^{\prime}\right\|
$$

Now, we need to show that $\mathrm{E}=\left|\mu_{Y}(P)-\mu_{Y}(S)\right| \leq \epsilon \mu_{Y}(P)$

$$
\begin{gathered}
\mathrm{E}=\left|\mu_{Y}(P)-\mu_{Y}(S)\right| \leq \sum_{p \in P}\left|\boldsymbol{d}(p, Y)^{2}-\boldsymbol{d}\left(p^{\prime}, Y\right)^{2}\right| \leq \sum_{p \in P}\left|\left(\boldsymbol{d}(p, Y)-\boldsymbol{d}\left(p^{\prime}, Y\right)\right)\left(\boldsymbol{d}(p, Y)+\boldsymbol{d}\left(p^{\prime}, Y\right)\right)\right| \\
\mathrm{E} \leq \sum_{p \in P}\left\|p p^{\prime}\right\|\left(2 \boldsymbol{d}(p, Y)+\left\|p p^{\prime}\right\|\right)
\end{gathered}
$$

We divide P in three sets-

$$
\begin{gathered}
P_{R}=\{p \in P \mid \boldsymbol{d}(p, Y) \leq R, \boldsymbol{d}(p, A) \leq R\}, \quad \mathrm{E}_{R}=\sum_{p \in P_{R}}\left\|p p^{\prime}\right\|\left(2 \boldsymbol{d}(p, Y)+\left\|p p^{\prime}\right\|\right) \\
P_{A}=\left\{p \in P \backslash P_{R} \mid \boldsymbol{d}(p, Y) \leq \boldsymbol{d}(p, A)\right\}, \quad \mathrm{E}_{A}=\sum_{p \in P_{A}}\left\|p p^{\prime}\right\|\left(2 \boldsymbol{d}(p, Y)+\left\|p p^{\prime}\right\|\right) \\
P_{Y}=P \backslash\left(P_{R} \cup P_{A}\right), \quad \mathrm{E}_{Y}=\sum_{p \in P_{Y}}\left\|p p^{\prime}\right\|\left(2 \boldsymbol{d}(p, Y)+\left\|p p^{\prime}\right\|\right)
\end{gathered}
$$

When $\boldsymbol{d}(p, A) \leq R, p$ lies in $Q_{i, 0}$ by the construction. So, $\left\|p p^{\prime}\right\| \leq \frac{\epsilon}{10} R$.

$$
\mathrm{E}_{R} \leq \sum_{p \in P_{R}} \frac{\epsilon}{10} R\left(2 R+\frac{\epsilon}{10} R\right) \leq \frac{\epsilon}{3} \sum_{p \in P_{R}} R^{2} \leq \frac{\epsilon}{3} \mu_{\text {opt }}(P, k) \leq \frac{\epsilon}{3} \mu_{B}(P)
$$

When $\boldsymbol{d}(p, A)>R,\left\|p p^{\prime}\right\| \leq \frac{\epsilon}{10 c} \boldsymbol{d}(p, A)$. So,

$$
\mathrm{E}_{A} \leq \sum_{p \in P_{A}} \frac{\epsilon}{10 c} \boldsymbol{d}(p, A)\left(2+\frac{\epsilon}{10 c}\right) \boldsymbol{d}(p, A) \leq \frac{\epsilon}{3 c} \sum_{p \in P_{A}} \boldsymbol{d}(p, A)^{2} \leq \frac{\epsilon}{3} \mu_{o p t}(P, k) \leq \frac{\epsilon}{3} \mu_{B}(P)
$$

For $p \in P_{Y}$, if $\boldsymbol{d}(p, A) \leq R$,

$$
\left\|p p^{\prime}\right\| \leq \frac{\epsilon}{10 c} R \leq \frac{\epsilon}{10 c} \boldsymbol{d}(p, Y)
$$

Else,

$$
\left\|p p^{\prime}\right\| \leq \frac{\epsilon}{10 c} \boldsymbol{d}(p, A) \leq \frac{\epsilon}{10 c} \boldsymbol{d}(p, Y)
$$

So,

$$
\begin{gathered}
\mathrm{E}_{Y} \leq \sum_{p \in P_{Y}} \frac{\epsilon}{10 c} \boldsymbol{d}(p, Y)\left(2+\frac{\epsilon}{10 c}\right) \boldsymbol{d}(p, B) \leq \frac{\epsilon}{3} \sum_{p \in P_{Y}} \boldsymbol{d}(p, Y)^{2} \leq \frac{\epsilon}{3} \mu_{B}(P) \\
\mathrm{E} \leq \mathrm{E}_{R}+\mathrm{E}_{A}+\mathrm{E}_{Y} \leq \epsilon \mu_{B}(P)
\end{gathered}
$$

Hence, S is a (k, ϵ)-coreset of P. Also, the above algorithm can be easily extended for weighted point sets.

Theorem: Given point sets P and A with n and m points, respectively, such that $\mu_{A}(P) \leq c \mu_{\text {opt }}(P, k)$, where c is a constant, one can compute a weighted set S which is a (k, ϵ)-coreset for P under k-means clustering, and $|S|=O\left(m \epsilon^{-d} \log (n)\right)$. If P is weighted, then $|S|=O\left(m \epsilon^{-d} \log (W)\right)$, where W is the total weight of P.

COMPUTATIONAL TIME

To compute S, we need to calculate $\left\|p x_{i}\right\|$ for all x_{i} for all p . This can be done naively in $O(m n)$ time. However, the authors suggest the use of a data-structure that answers constant approximate nearest neighbor queries in $O(\log m)$ per point in P after $O(m \log m)$ pre-processing. This data structure and algorithm is discussed in a paper given by S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Y. Wu in 1998. Next, we compute the exponential grids, and compute for each point of P_{i} its grid cell. This takes O (1) time per point, if carefully implemented using hashing, log and floor functions.

Hence, the total time complexity for the algorithm becomes $O(m \log m+n \log m+n)=\boldsymbol{O}(\boldsymbol{n} \boldsymbol{\operatorname { l o g }} \boldsymbol{m})$ in worst case, or $\boldsymbol{O}(\boldsymbol{m n})$ if implemented naively.

FAST CONSTANT FACTOR APPROXIMATION

To get the set $A=\left\{x_{1}, \ldots, x_{m}\right\}$, the authors have applied algorithms previously given by Feder and Greene in 1988 and by S. Har-Peled in 2001 on the original point set P. They take the union of the resultant set with a randomly picked subset of P. The size of the resultant set is claimed to be $O\left(k \log ^{3} n\right)$, or $O\left(k \log ^{3} W\right)$ if weighted. The running time is $O(n \log (k \log n))$, or $O\left(n \log ^{2} W\right)$ if weighted.

