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Introduction

This paper discusses the construction of (k, €)-coresets for the k-means and k-median clustering
problems for a set of n points in d-dimensional space.

Definitions

e Fora point set X, and a point p, both in R%, let d(p, X) = min,ex||xp|| denote the distance of
p from X.

e For a weighted point set P with points from R%, with a weight function w: P > Z* and any
point set C, we define v.(P) = Z,cpw(p)d(p, () as the price of the k-median clustering

provided by C.

o Letv,, (P,k)= chgr‘}ilra:k v¢(P) denote the price of optimal k-median clustering for P.

e Similarly, u-(P) = Epepw(p)(d(p, C ))2 denotes the price of the k-means clustering of P

provided by C, and u,,.(P, k) = - rrdnrcl

min Uc(P) denotes the price of the optimal k-means

clustering for P.

k ) =
e Ry, (P k) = YortPR) 4o notes the average radius of P, and Rl’)‘m(p' k) = ’uopltp(lP ) is the

[P]
average means radius of P.
e For a weighted point set P € R%, a weighted set S € R? is a (k, €)-coreset of P for the k-
median clustering, if for any set C of k points in R%, the following relation holds true
(1 —e)ve(P) <ve(S) < (A + e)ve(P).
e Similarly, S € R% is a (k, €)-coreset of P for the k-means clustering, if for any € € R%, we
have (1 — €)uc(P) < uc(S) < (1 + )uc(P).

Coreset for k-Median

Let P be a set of n points in R?%, and A = {xy, ..., x,,} be a point set, such that v4(P) < ¢V, (P, k),
where c is a constant. Let P; be the points of P having x; as their nearest neighborin 4, fori = 1, ..., m.
Let R = %. For any p € P;, we have ||px;|| < v4(P) = cnR for i = 1, ...,m. Now, we construct an

exponential grid around each x; as follows. Let Q; ; be an axis parallel square with side length 2R2/

starting from j = 0 centered at x;. Since ||px;|| < cnR, maxj = max [lg (%)] = [lg (%)] So,j <M
where M = [lg (%)] Next, let V; o = Q;9,and V; j = Q; j\Q; j—1, forj = 1, ..., M. Partition V; ; into a grid

. . R2J . .
with side length r; = ioﬁ’ and let G; be the resultant exponential grid for V;, ..., V; ;. Next, for every

point in P;, compute the grid cell in G; that contains it. For every non-empty grid cell in G;, pick an
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arbitrary point of P; inside it as the representative of all the points inside that cell, and set its weight
equal to the number of points of P; inside that cell. Let the resultant set be S; fori = 1, ..., m, and let

S = U; S;. Then, Sis a (k, €)-coreset of P for the k-median clustering.

SIZE OF CORESET

Every cell in G; contributes at most one point to S;, so [S;| < |G;| = X;|V; ;|. To calculate this value-

2R\* . (10cd\*
al=(5,) =2 (5)

€

o d ; d \¢

i 2R2/-1 PR 2 P, 10cd\* 1w
10cd
10cd\* B _
Gl = M@0 -1 +29) (—=) = 0Me™) = 0l )
S| = XulS:| = 0(|A]1g(n) e?)
PROQOF OF CORRECTNESS

Let Y be an arbitrary set of k points in R%. We need to show that (1 — €)vy(P) < v(S) < (1 + €)vy (P)
or,

E = [wy(P) — vy ()| < ewy(P)

For any p € P;, let p’ denote the image of p in S;, that is, the point in P; that was chosen as the
representative of all points inside the same cell of G; as p.

Lemma1: d(p,Y) < |lpp'|l + d(p’,Y) and d(p’,Y) < |lpp'|l + d(p,Y)

Proof: Let a, B € Y such that « is the closest point to p in Y and S be the closest point to p’ in Y. So,
d(p,Y) =|lpa]l and d(p',Y) = ||p’'Bl|. For contradiction, let d(p,Y) > |lpp'll + d(p’,Y). Now
consider the triangle formed by p, p’ and B. By triangle inequality, ||pBIll < |lpp’ll + |lp'B]|. Or,

IpBIl < llpp’'ll +d(",Y) <d(p,Y) = ||pa||

As [lpBll < llpall, and d(p,Y) = min [[pyll, hence |[pall # d(p,Y).
So, using proof by contradiction, d(p,Y) < |lpp’|| + d(p’,Y) and d(p',Y) < |lpp’|| + d(p,Y).
Using the above lemma, we get |d(p,Y) — d(p’,Y)| < llpp’ll. Now,

E=1vy(P) —w(S)| = Xperld®,Y) —d(p", V)| < Xperllpp'll

R~ €p

For all the points p that lie in Q; o, llpp’ll < ryVd = oore = 1o

So, for all points p such that d(p,A) < R, ||pp’|| < 1L0CR, since all such points will lie in Q; 4.
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And for all points p € Q; such that d(p,A) > R, l|pp’ll < —d(p, 4)

For all the points p that liein V;; (j = 1,..., M), d(p,A) = 2R2/71 (as they are outside Qij-1)- So,

. €
"N<rvd = R2 < —d(p, A
llpp’ll < r,Vd < 175:%@.4)

€
10cvVd
Now,

PN ZAED N B I EY (ﬁd(p,A))

pEP i peP,d(p,A)<R peP,d(p,A)>R

€ € 2e
T EZPEPd(p'A) S EVA(P) < €Vop (P, k) < evy(P)

vy (P) = vy (S)] < evy(P)

Hence, S is a (k, €)-coreset of P. Also, the above algorithm can be easily extended for weighted point
sets.

Theorem: Given point sets P and A with n and m points, respectively, such that v,(P) < cvop,¢ (P, k),
where c is a constant, one can compute a weighted set S which is a (k, €)-coreset for P under k-median
clustering, and |S| = 0(me~%*log(n)). If P is weighted, then |S| = 0(me~%*log(W)), where W is the
total weight of P.

Coreset for k-Means

The construction of the coreset is the same as that for k-median but for a few changes. Let P be a set
of n points in R%, and A = {xy, ..., x,,} be a point set such that p4(P) < cpyp. (P, k). For constructing

a k-means coreset, let R = ui_iP)' For any point p € P;, |lpx;||> < us(P) = VcnR. The set S

constructed using this R and the method described earlier is a (k, €)-coreset of P for k-means
clustering.

PROOF OF CORRECTNESS

Consider an arbitrary set Y of k points in R?. Let p’ be the image of p in S. Using Lemma 1, we get-
ld(p,Y) —d (", V)| < |lpp’ll
And,
dp,Y)+d@',Y) <2d(,Y) + |lpp'l
Now, we need to show that E = |uy (P) — uy (S)| < €uy (P)
E = luy(P) — uy(S)| < Tperld(®,Y)? — d(@',Y)?| < Tpep|(d(p, V) —d (@', V))(d(p, V) + d(@', V)|

E < Yperllpp’li2d(p,Y) + llpp’I)
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We divide P in three sets-
Pr={p € Pld(p,Y) <R, d(p,A) <R}, Er=2Xpeprllpp'l2d®,Y) + llpp’ID)
Py = {p € P\Pld(p,Y) < d(p,A)}, Ey = Zper, llpp'll2d(p, Y) + llpp’ID
Py = P\(PRUPy), Ey = Yper llpp'lI(2d (0, Y) + llpp’ID

When d(p, A) <R, p lies in Q;, by the construction. So, ||pp’|| < 1—€0R.

€
Egp < Z ER(ZR +ER Z R* < uopt(P k) << .uB(P)

PEPR pEPR

When d(p, 4) > R, ||pp'll < 75 d(p, 4). So,

Ba< ) 1ood0A) (24 750) 0 A) < o ) A A < 2 htope(P. ) < SHs(P)

PEPA PEPA

Forp € P, ifd(p,A) <R,
 R< —
llpp'll < Toc X = Toe d(p. Y)
Else,
llpp’Il < Wd(p.A) < —d(P. Y)
So,

By < ) 1o-d@Y) (24 15) A B) <5 ) d(,V)? < Zus(P)

PEPy pEPy
E<Egx+E4,+Ey <eup(P)

Hence, S is a (k, €)-coreset of P. Also, the above algorithm can be easily extended for weighted point
sets.

Theorem: Given point sets P and A with n and m points, respectively, such that p,(P) < cigp:(P, k),
where c is a constant, one can compute a weighted set S which is a (k, €)-coreset for P under k-means
clustering, and |S| = 0(me~%log(n)). If P is weighted, then |S| = 0(me~%log(W)), where W is the
total weight of P.

COMPUTATIONAL TIME

To compute S, we need to calculate ||px;|| for all x; for all p. This can be done naively in 0 (mn) time.
However, the authors suggest the use of a data-structure that answers constant approximate nearest
neighbor queries in 0(logm) per point in P after O (m logm) pre-processing. This data structure and
algorithm is discussed in a paper given by S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and
A.Y. Wu in 1998. Next, we compute the exponential grids, and compute for each point of P; its grid
cell. This takes 0(1) time per point, if carefully implemented using hashing, log and floor functions.
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Hence, the total time complexity for the algorithm becomes O(mlogm + nlogm + n) = 0(n log m)
in worst case, or O(mn) if implemented naively.

FAST CONSTANT FACTOR APPROXIMATION

To get the set A = {xy, ..., X}, the authors have applied algorithms previously given by Feder and
Greene in 1988 and by S. Har-Peled in 2001 on the original point set P. They take the union of the
resultant set with a randomly picked subset of P. The size of the resultant set is claimed to be
O(klog®n), or O(klog® W) if weighted. The running time is O(nlog(k logn)), or O(nlog® W) if
weighted.
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