
Better Streaming Algorithms for Clustering Problems

Sachin Goel

May 1, 2015

1 Overview

In this paper, we discuss a polylog space algorithm to solve k -median problem in a streaming
setting. The algorithm proceeds in phases, consuming at least one point in each phase,
bounding the number of phases by #X. This algorithm uses an Online facility location
algorithm as a sub-routine which is discussed in section 2.

2 Online-FL Algorithm

An instance of the Facility Location problem is a set of demand points and a set of feasible
facilities with each feasible facility associated with a facility cost and a distance function
between all pairs of points. The objective is to pick a subset of feasible facilities such that
the sum of costs of the facilities chosen plus the sum of distances of demand points from
the nearest facilities is minimized. In other words, if D is the set of demand points and F
is the set of feasible facilities with a facility cost of cf associated with each facility c in F , then:

minF⊆F
∑

f∈F
cf +

∑
x∈D

d(x, F)

where d(x, F) is the distance of x from the nearest point in F .
The above problem is a Lagrangian relaxation to the k -median problem in which the number
of clusters(medians) is not fixed, rather there is an additive cost associated with each cluster.
We now discuss an algorithm for solving the online version of the facility location problem,
with uniform costs, which is due to Meyerson.

Algorithm Online-FL(data stream X, facility cost f).

1. Make one pass over X performing the following steps for each x ∈ X.

2. Let δ be the distance of the current point x to the closest already-open facility.

3. With probability δ/f (or probability 1 if δ/f > 1), open a new facility at x otherwise
assign x to the closest already-open facility.

1

Consider an instance of the k -median problem over a point stream X and let OPT be its
optimal solution. Let L be a lower bound on this optimal solution and define a facility cost
f = L

k(1+logn)
[The intuition is that we are going to distribute the cost equally among an

expected k log n medians.]

Lemma 1.

The number of medians Online-FL is expected to produce is at most k(1 + log n)(1 + 4OPT
L

).
The expected cost is at most L+ 4OPT

Proof. Let c∗1, c2,
∗ . . . , c∗k be the medians in the optimal solution. Let d∗p denote the distance

of point p from the nearest median in the optimal. Let C∗i be the cluster associated with
the median c∗i and A∗i be the cost associated with the cluster C∗i , i.e. A∗i =

∑
x∈C∗

i
d(x, c∗i).

Define a∗i =
A∗

i

|C∗
i |

.

Consider an optimal cluster C∗i . Define set Sj = {p|p ∈ C∗i , 2
j−1a∗i < d∗p < 2ja∗i } for

j = 1, 2, . . . , log n. Note that for j > log n, Sj contains points p st. d∗p > na∗i which is not
possible. For the points in Sj, the expected cost before a facility is opened at some point in Sj

is at most f . However, as soon as a facility is opened at a point in Sj, the maximum distance
of a point p ∈ Sj from an already-open facility is at most d∗p + 2ja∗i = d∗p + 2.2j−1a∗i < 3d∗p.
Now, for the points in P = C∗i \ ∪j=1,2,...,lognSj = {p|d∗p < a∗i }, the expected cost before a
facility is opened at some point in P is at most f . However, as soon as a facility is opened
at a point in P , the maximum distance of a point p ∈ P from an already-open facility is at
most a∗i + d∗p.
Thus, the expected number of medians opened amongst points in C∗i is at most 1 + log n+
1
f

∑
p∈C∗

i
(a∗i + 3d∗p) ≤ 1 + log n +

4A∗
i

f
. Summing this over all clusters C∗i , i = 1, 2, . . . , k,

expected number of medians is at most k(1 + log n)(1 + 4OPT
L

).
Expected cost for points in C∗i is at most f(1 + log n) +

∑
p∈C∗

i
3(a∗i + d∗p) ≤ L

k
+ 4A∗i .

Summing this over all clusters C∗i , i = 1, 2, . . . , k, expected number of medians is at most
L+ 4OPT .

Corollary 1.

With probability at least 1/2, algorithm Online-FL produces a solution of cost at most
4(L+ 4OPT) and using at most 4k(1 + log n)(1 + 4OPT

L
) medians.

3 Streaming k-median

We now present the details of the algorithm for finding medians in polylog space.
As mentioned earlier, the algorithm proceeds in phases. Each phase consumes some points
from the data stream X. During phase i, the algorithm takes a modified input Xi which is
the remaining data stream and the medians found in the previous phase, along with their
associated weights(which are defined as the number of points associated with them). It then
outputs medians along with their associated weights and this continues till the whole of data
stream is consumed.

2

During each phase, the algorithm processes some points and marks them as read. We’ll make
a distinction later that the point which leads to a phase change is not marked read rather
only seen.

Algorithm Polylog-space(point stream X, integers k and n).

1. L1 ←SET-LB(X)/β

2. i← 1;X1 ← X

3. While there are unread points in X:

(a) Mi ←PARA-CLUSTER(Li, Xi, k, n)

(b) Xi+1 ←Mi||(X −Ri)

(c) Li+1 ← βLi

(d) i← i+ 1

4. Return Mi−1, the medians given by the most recent invocation of PARA-CLUSTER

Algorithm SET-LB(point stream X, integer k).

return the distance between the closest pair of points between the first k + 1 members of X

Algorithm PARA-CLUSTER(point stream S,lower bound L,integers k and n).

1. Run 2 log n parallel invocations of Online-FL with a facility cost of f = L/(k(1+log n))
on the input stream S

2. Each invocation is run as long as the number of medians doesn’t exceed 4k(1+log n)(1+
4(γ+β)) and the cost of solution, on the point stream S doesn’t exceed 4L(1+4(γ+β))
where γ and β satisfy the inequality γ + 4(1 + 4(γ + β)) ≤ γβ. If either condition is
violated, that invocation is stopped.

3. When all the invocations have stopped, mark the points processed(seen) by the last-
finishing invocation as read except for the last point which resulted in the violation
of the conditions. Return the medians found by this invocation.

Note that:

1. The number of points seen is always one more than the number of points read except
in the last phase when the algorithm terminates because there are no more points left.

2. The last-finishing invocation is the one which saw the most number of points from the
point stream S

3. The medians returned by the PARA-CLUSTER algorithm are weighted points, and
the Online-FL adapts to this by using a probability wδ/f to open a facility at a point.
Note that the point in the original point stream all have weights 1.

3

4. γ and β are kept fixed for the full run of the algorithm. They must satisfy the inequality
γ + 4(1 + 4(γ + β)) ≤ γβ.

Definitions:

1. Ri is defined as the set of points read during phases 1, 2, . . . , i and we define Si as the
set of points seen during the phases 1, 2, . . . , i.

2. Define Ai as the cost of the medians Mi−1 on the set Ri−1, A1 = 0.

3. Let p be the number of phases. For 1 ≤ i < p, define OPTi as the cost of optimal
solution for Si when the medians are allowed to be chosen from X.

The idea is to maintain a lower bound on the optimal cost of the points seen so far, which
is exactly what Li maintains.

Lemma 2.

Let P (i) denote the event that Ai ≤ γLi, and let Q(i) denote the event that Li+1 = βLi ≤
OPTi. For appropriate values of γ and β, with probability 1 − 1

n2 , for all 1 ≤ i < p, P (i)
and Q(i) hold.
Let us now see how we can obtain a constant factor approximation to the k -median problem
on X using this.
Note that Q(p−1) and P (p−1) hold with probability 1− 1

n
. Lp−1 ≤ OPTp−1/β ≤ OPTp/β,

which implies Lp = βLp−1 ≤ OPTp. Now, the last phase of the algorithm outputs O(k log n)
medians; let’s call this set S. The cost of these medians is at most 4Lp(1 + 4(γ + β)) ≤
4(1 + 4(γ + β))OPTp = αOPT .
It is easy to see that there must exist a solution on S with k medians amongst points in S
with cost at most 2(1 + α)OPT . Using a c-approximation algorithm to solve the k-median
problem on S, we obtain a solution of cost 2c(1 + α)OPT and the cost of this solution on
the point stream X is at most αOPT + 2c(1 + α)OPT = (α + 2c(1 + α))OPT . We thus
obtain a constant factor approximation for the k median problem.

Note that in the above algorithm there is no guarantee that the number of phases is at
most n. To ensure this, we need to obtain a better bound on Li. Suppose we ensure that
OPTi ≤ βLi+1. This means that at the termination of phase i + 1, we will have definitely
read at least one point from X with high probability. To do this, we compute an approxi-
mate k-median solution on Mi and x where x is the point which was marked seen, not read.
Suppose we use a c-approximation algorithm and let APXi be the value of the c-approximate
solution thus obtained. Then, we set Li+1 as follows:

L′i+1 =
APXi

2c(1 + γ)

Li+1 = max(βLi, L
′
i+1)

with an added constraint β ≥ 2c(1 + γ) + γ

4

