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Abstract

This is a short report on [1]. We show that approximating intercenter
K-means clustering i.e. the problem of minimizing the maximum eu-
clidean intracluster distances is NP-hard for approximation factors

√
2−ε

for all ε > 0 when the points belong to Rd where d ≥ 2.

1 Overview

The familiar k-center problem in euclidean spaces is changed in two ways in this
paper: (i) We replace the notion of distance from a center with the maximum
of the distance from all points and (ii) we define it for a general metric space
using graphs.

Let G = (V,E,W ) be weighted undirected graph with vertex set V , edge
set E and distances on the edges (also called a dissimilarity function) W where
edge e has distance we. A partition of V into clusters B1, B2, . . . , Bk is called a
k − split. The cost of Bi is the max of we, e ∈ Bi, and the cost of a split is the
maximum of the costs across all the clusters. The problem is to find a k− split
such that the cost is minimized.

We will prove that the above problem is hard to approximate in three steps:

1. We will first define a restricted version of the exact cover problem by 3
sets and show that it is NP-hard.

2. Then given an instance of the restricted cover by 3 sets problem, we con-
vert into a graph with weights which obey triangle inequality and show
that finding (2− ε)-approximation would lead to solving the problem.

3. We then modify the graph and show how it can be massaged to give us a set
of points on a 2D plane whose K-center solution with any approximation
better than

√
2 would also lead to solving the restricted cover by 3 size

sets problem.

2 The Proof of Hardness

2.1 Restricted Set Cover

In the exact cover by 3 sets (also called XC3), we are given a set of points U =
{u1, . . . , un} and a family of sets defined over these points F = {C1, . . . , Cm}
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Figure 1: Component repre-
senting a triplet Ci in F

Figure 2: Clusterings of components in (a) C
and in F−C

where Ci ⊆ U and |Ci| = 3. Further it is given that each ui is present in atmost
3 sets in F1. The problem is then to find a subset C ⊆ F which exactly covers
U i.e. each ui is present in exactly one set Ci ∈ C.

The exact cover by 3 sets problem is known to be NP-complete. We will
further impose a restriction that each element ui appears in exactly 3 sets in F
called the the restricted exact cover by 3 sets (RXC3). 2 The problem remains
NP-complete. To show this, we present an algorithm Build which converts an
instance of XC− 3 to an instance of RXC− 3. It is straightforward to see that
solving RXC − 3 gives us a solution for XC − 3.

Algorithm 1 Build(U, F)

if there is ui such that it is not present in any set in F then
return an coverable instance

end if
if The number of elements of U which are present either once or twice in F
is not a multiple of 3 then

Make 3 copies of (U,F) and let (U,F) be the new copy.
end if
while There exists ui, uj , uk which do not appear in exactly 3 subsets in F
do

Add new elements yi, yj , yk to U .
Add (ui, yj , yk),(uj , yk, yi), and (uk, yi, yj) to F.

end while

2.2 A hard graph

Given an instance of RXC-3 (U,F), we construct a complete graph G(V,E,W )
where we for all edges is either 1 or 2.
Vertex Set : One vi for ui in U and nine vertices for each set Ci ∈ F.
Edge Set : It is a complete graph.
Distance weights: For each 3-element Ci, eighteen edges will have weight 1, and
the rest will have 2. The edges with weights 1 are shown in figure 1.
k : k = 9n+n

3 = 10n
3 .

Theorem 1. A k-split of G with cost 1 is possible iff there is an exact cover of
(u,F).

1Note that this means m ≤ n
2Now m = n.
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Figure 3: S-graph representing a triplet
Ci in F

Figure 4: A crossing of an s-graph and
its elimination by inserting new nodes

Proof. Given an exact cover solution C, clustering is done according to Figure
2. Then each cluster is a triangle. Thus the cost is . Alternatively, if the cost
if 1, then each cluster has to be a triangle as there is no 4-clique. Thus one of
the two clusterings in Figure 2 are the only possibilities. As each vi is in some
cluster of type (a) in Fig. 2, pick the corresponding Ci. This forms an exact
cover.

Because all the weights are either 1 or 2, they trivially satisfy the triangle in-
equality condition. Moreover, the cost of any k-split is either 1 or 2 and so if we
can find a solution with approximation factor (2− ε), we would find the optimal
solution with cost 1. Hence this construction already gives us that approximat-
ing k-center is NP-hard for arbitary metric spaces. The graph can further be
embedded in Rn euclidean space with standard embedding techniques.

2.3 S-graphs

To embed our graph on a 2D plane, we first convert the graph obtained by rules
in Fig. 1 to a planar graph. For this, we extend the triplet component to a
height h = O(n2) as shown in Fig 3. This is done so that each of the extension
(called an s-graph) intersects another s-graph in exactly one level (see Fig 4
(a)). Such an intersection is taken care by inserting 3 new nodes and changing
the edges as shown in Fig 4.

Theorem 2. A k-split of G′ constructed with the new rules with cost 1 is
possible iff there is an exact cover of (u,F).

Proof. The reduction occurs similar to the previous case The only problem
occurs when the s-graphs intersect each other. As long as the the intersection
behaves properly i.e. is one of the four types in Fig. 5, the proof of the previous
theorem carries through. Given an exact cover C, we cluster into triangles as
before. The intersections between the s-graphs are taken care as shown in Fig
5.

Suppose there is a clustering of G′ with cost 1. Note that there is still no
clique of size 4. Thus all clusters remain triangles. The bad cases occur as
shown in Fig. 6 (and their mirrored images). However if we cluster them in
either manner, there exist three nodes (exposed nodes) not all of which can be
a part of a triangle, thus making it impossible for the cost to be 1. Hence only
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Figure 5: Clustering at the S-graph in-
tersections

Figure 6: Bad clustering are not possi-
ble as at least one of the exposed nodes
will be left out of a cluster

clusters of type shown in Fig. 5 are possible. Using similar arguments as in
Theorem 1, we can obtain an exact cover from the clustering.

2.4 A planar embedding

We now go from the planar graph to embedding points on a 2D plane. Here we
will lose the approximation factor we can prove and show that it is hard for any
(
√

2− ε). The graph G′ obtained from the EXC-3 instance is now made up of
4 kinds of blocks. The nodes in each of the blocks are placed as shown in Fig.
7. Note that the lines in the lanar embedding are only indicative of distances
and there is no graph (other than the euclidean distance graph implicit in any
set of points in Rd).

Theorem 3. A k-center clustering of the obtained points with cost 1 is possible
iff there is an exact cover of (U,F).

Proof. Note that the cost of any triangle is still 1 and there are no 4 nodes
whose cluster can have cost 1. After this, the proof is exactly same as the one
in Theorem 2.

This leads us to our final theorem on the hardness of approximation of the
k-center problem.

Theorem 4. Getting a k-center solution is NP-hard for approximation factor√
2− ε for any ε > 0.

Proof. Note that the implicit complete graph of the point set we defined has
edges with weights other 1 or 2. The optimal solution is still ≤ 1 from Theorem
3. The shortest distance between any two points not part of a triangle occurs
in the right angled arms in the bottom two transformations (Fig. 7). Their
distance using triangle inequality can be seen to be <

√
2 − ε

2 + ε
2 =

√
2 − ε.

Thus a solution which gives a solution within an approximation factor of
√

2− ε
would give the optimal solution wit cost 1, and so with Theorem 3, we solve the
exact cover problem.
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Figure 7: Final transformations to give a set of points embedded on a plane.
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