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Abstract

The k-means algorithm is the most widely used algorithm for discovering clusters in the data.
Here, we first show Elkan’s algorithm [1], which accelerates k-means by avoiding redundant distance
calculations. This is done by using triangle inequality to keep track of lower and upper bounds for
distances between points and centers. Further, we discuss another algorithm by Hamerly [2], which
builds on Elkan’s algorithm, and uses a novel lower bound for point-center distances to give a much
faster algorithm for datasets of low and medium dimensions (e.g. up to 50 dimensions).

1 Lloyd’s algorithm

This is the most popular algorithm used for k-means clustering. The two primary steps in this iterative
algorithm are:

1. For each data point x

e for each cluster center ¢ (the ‘innermost loop’)
— compute the distance between = and ¢

e assign x to its closest cluster center

2. Move each center to the mean of its assigned points

The number of distance calculations in this algorithm is nke where n is the number of data points, k
is the number of clusters to be found, and e is the number of iterations required. Empirically, e grows
sublinearly with %k, n, and the dimensionality d of the data. Elkan’s algorithm reduces the number of
distance calculations in practice closer to n.

Why is Lloyd’s algorithm inefficient?

Most of the distance calculations in the algorithm are redundant. It is not necessary to calculate exact
distance between the point and the center in order to say whether the point should be assigned to that
center or not. This is where the bounds on the distances come into play. Also, towards the end of algo-
rithm during convergence, there are very small changes in the center-assignments of the data points. This
fact is not exploited in the standard algorithm as no information is passed in the subsequent iterations.
Elkan’s optimized algorithm recognizes these short-comings and improves on them. For accelerated k-
means algorithm to be usable wherever the standard algorithm is used, it needs to satisfy some properties.

Properties that accelerated k-means algorithm should satisfy

1. It should be able to start with any initial centers, so that all existing initialization methods can
be used.

2. It should be able to use any black-box distance metric, so it should not rely for example on
optimizations specific to Euclidean distance.

3. Given the same initial centers, it should always produce the same final centers as the standard
algorithm. In fact, Elkan’s algorithm produces the same set of center locations as the standard k-means
algorithm after each iteration.



2 Applying the triangle inequality

The only “black box” property that all distance metrics d possess is the triangle inequality: for any three
points x, y, and z, d(z, z) < d(z,y) + d(y, z). However, the triangle inequality gives only upper bounds.
So, in order to get the lower bounds, we use the following two lemmas.

Lemma 1: For any three points z, b, and ¢, if d(b, c) > 2d(x,b) then d(z,c) > d(x,b).
Proof:
We know that, d(b,c) < d(b,z) + d(=z,
= d(b,c) — d(b,x) < d(x,c)
= 2d(z,b) — d(x,b) < d(b,c) —d(b,z) < d(z,c)
= d(z,b) < d(z,c)

c)

Lemma 2: For any three points z, b, and ¢, d(z, ¢) > max{0,d(z,b) — d(z,c)}
Proof:
We know that, d( ,0) < d(x,z) + d(b,c)

d(x
= d(x,¢) = d(x,b) — d(b, c) (2)
Also, d(z,c) > 0

Now, we will describe how to use Lemma-1 and Lemma-2 in order to avoid distance calculations and to
find upper and lower bounds.

1. How to use Lemma-1
Let x be the data point, ¢ be the center to which x is currently assigned, and ¢’ be any other center.

(a) If d(z,c) < 2d(c, ) = d(z,c) < d(z, ). So, we don’t have to calculate d(z, ).

b) If d(x,c) is not known exactly, but we know an upper bound d(z,c) < u. If u < Lld(c, ) =
2
d(z,c) < d(z,c'). Again, no need to calculate d(z,c).

(c¢) ifu < Lmings.{d(c,c')} = z remains assigned to ¢ and there is no need for any distance calculation
of .

2. How to use Lemma-2
Let x be the data point, b be any j** center, and ¥’ be the previous version of j* center.

(a) Let I’ be the lower bound of the previous iteration such that d(z,b") > I’. Then the lower bound for
the current iteration, [, can be inferred as d(x,b) > max{0, d(z,b')—d(b,b’)} > max{0,!'—d(b,b")} =
l.

(b) Now we show how this lower bound is used. Let x be assigned to center ¢ and ¢ be any other
center. Let d(z,c) < u(z) and d(z,c¢’) > I(z, "), where u(z) is the upper bound on the distance
between x and the center to which it is assigned, and I(z, ¢’) is the lower bound on the distance
between point = and center ¢’. If u(z) <lI(z,') = d(z,¢) < u(x) <l(z,) < d(z,c). So, we need
to calculate neither d(z,c) nor d(x,c).

3 Elkan’s accelerated k-means algorithm

Initialization: — Pick initial centers and set [(z,c) = 0 VaVe.
— Assign ¢(x) = argmin, d(z, ¢), using 1(a) and d(c, ') from Step-1.
— Every time we compute d(z, ¢), set I(z,c) = d(z,¢).
— Assign u(z) = min. d(z, ¢) = d(z, c(x)).

Repeat till convergence: 1. Compute d(c,c’) Ve, c'. Compute s(c) = 3 mine . d(c, ') Ve.

2. Identify x such that u(z) < s(c(x)). According to result 1(c), we can avoid calculations for
all such = beyond this point.

3. For all remaining x and ¢ such that



(i) ¢ # c()

(ii) u(x) > l(x ¢) [Condition 2(b)]

(iii) w(z) > d(c(z),c) [Condition 1(b)]:

(a) Compute d(x,c(x)) and update u(z) = d(z, c(z)).

(b) If d(z, c(x)) > l(z,c) or d(z,c(x)) > 3d(c(z),c), then compute d(z,c). Now, if d(z,c) <
d(x, c( )), then assign c¢(x) = ¢ and update u(z) = d(z, ¢(x)).

4. Let m(c) be the mean of points assigned to center c.

5. Assign l(z, ¢) = max{l(z, c) — d(c,m(c)),0} Vx,c

6. Vx, assign: u(z) = u(x) + d(m(c(x)), c(x)).

7. Replace ¢ by m(c).

The following points are to be noted about the algorithm:

e at the starting of each iteration, the upper bounds u(x) and lower bounds I(z, ¢) are tight for most
points x and centers ¢, which in effect reduces the number of distance calculations in that iteration.

e There are many distance calculations in the initialization, but the number reduces thereafter.

e Each time d(z, ¢) is calculated, update I(z, ¢) = d(x,c). Also, whenever ¢(x) is changed or d(z, ¢(z))
is computed, update u(x) = d(z, ¢(x)).

e Step-3(b) repeats checks (ii) and (iii) in order to avoid computing d(z, c¢) if possible.

3.1 Limitations

During each iteration of the algorithm, the lower bounds I(z, ¢) are updated for all points 2 and centers
c. These updates take O(nk) time, so the complexity of the algorithm remains at least O(nke), even
though the number of distance calculations is roughly O(n) only.

Also, the amount of memory overhead becomes large for large values of n and k since we need to
maintain n upper bounds, kn lower bounds, and O(k?) inter-center distances.

4 Brief Overview of Hamerly Algorithm

Hamerly discusses a new algorithm which is built on Elkan’s algorithm. On datasets of low and medium
dimensions, this algorithm performs much better than other algorithms. It eliminates the need to execute
the innermost loop of Lloyd’s algorithm 80% of the times or more.

The new algorithm maintains two distance bounds per data point for its two closest centers. One is
an upper bound on the distance to the closest center, and one is the lower bound on the distance to the
second-closest center. Unlike Elkan’s algorithm, this algorithm does not maintain lower bounds between
all point-center combinations, so the lower bound is different. This algortihm uses the same triangle
inequality results as Elkan to skip the entire loop completely.

5 Results

Without going into the details of Hamerly algorithm, some of the comparative study of the two algo-
rithms is presented here.

Table-1 describes the asymptotic time and memory overheads of three accelerated algorithms. The
k-d tree algorithm is the one that was discussed by Madhur in the class during his presentation. Using
a k-d tree nearly doubles the amount of memory needed over Lloyd’s algorithm, in order to keep sum-
mary statistics at each node, and to store the tree structure. Elkan’s algorithm requires an additional
(n + 1)k scalar values for the bounds, as well as k? scalar values for the inter-center distances. These
extra memory requirements become prohibitive for large datasets and large k.



Table 1: This table gives the overhead (in time and
memory) for each examined algorithm. Each entry rep-
resents the asymptotic overhead spent by that algorithm
beyond Lloyd’s algorithm. The initialization time (col-
umn 2) is extra time needed to allocate memory and
create data structures. Time/iteration is the extra time
spent during each k-means iteration, and memory ac-
counts for all extra memory used.

init. time time/iteration | memory
k-d tree | nd +nlog(n) | - nd
elkan ndk + dk? dk? nk + k?
hamerly | ndk dk? n

Table 2: This table shows the time (user CPU seconds) each algorithm uses on several datasets. We report total
time first, followed by per-iteration time in parentheses. The per-iteration time includes only the time when
the algorithm is running, and excludes time to load data and initialize any data structures (e.g. constructing
a k-d tree). The first three datasets are synthetically generated; the remaining four are those used by Elkan.
Bold indicates the lowest time among the algorithms. Our algonthm competitive with or much faster than other
algorithms for 2 to 32 dimensions. It also performs competitively on up to 50 dimensions.

Total user CPU Seconds (User CPU seconds per iteration)

Dataset k=3 k=20 k=100 k = 500

uniform random | iterations 44 227 208 710

n = 1250000 lloyd 4.0 (0.058) 614 (0.264) 3202 (1.070) 34869 (4.900)

d=2 kd-tree 35  (0.006) 11.8  (0.035) 346 (0.102) 3388 (0471)
elkan 72 (0.133) 752 (0.325) 353.1  (1.180) 97718 (3.902)
hamerly 2.7 (0.031) 146  (0.058) 28.2  (0.090) 204.2 (0.286)

uniform random | iterations 121 353 312 1405

n = 1250000 lloyd 218 (0.134) 1789 (0.491) 660.7  (2.100) 13854.4 (0.857)

d=8 kd-tree 1175 (0.886) 6226 (1.740) 23908 (7.633) 467315 (33.254)
elkan 141  (0.071) 1306  (0.354) 5018 (1879) | 11827.9 (8.414)
hamerly | 10.9 (0.045) 40.4 (0.099) | 169.8 (0.527) | 1395.6 (0.989)

uniform random | iterations 137 4120 2006 2408

n = 1250000 lloyd 664 (0.323) 54795 (1.325) 125438 (5.974) GROGT.3  (28.632)

d=32 kd-tree 2084 (1.34) 207196 (7.207) | 741813 (35.380) | 425513.0 (176.697)
alkan 48.1 (0.189) 1370.1 (0.327) 26249 (1.242) 14245.9 (5.907)
hamerly 46.9 (0.180) 446.4 (0.103) | 12389 (0.581) 9886.9 (4.097)

birch iterations 52 179 110 ]

n = 100000 lloyd 053 (0.004) 160 (0.024) 11.80  (0.104) 4887  (0.490)

d=2 kd-tree 0.41 (<0.001) 0.9¢ (0.003) 267 (0.021) 17.68 (0.173)
alkan 0.58  (0.005) 4.35 (0.023) 11.80 {0.104) 54.28 (0.545)
hamerly 0.44 (0.002) 0.90 (0.003) 1.86 (0.014) 7.81 (0.075)

covtype iterations 19 204 320 111

n = 150000 lloyd 3.52  (0.048) 48.02 (0.222) 32225 (0.999) 564.05 (5.058)

d=35 kd-tree 6.65  (0.205) 266.65 (1.203) | 2014.03 (6.285) 330327  (20.734)
elkan 3.07 (0.022) 11.58 (0.044) 70.45 (0.212) 152.15 (1.347)
hamerl_\' 295 (0.019) 7.40 (0.024) 42.83 (0.126) 169.53 (1.505)

kddcup iterations 39 55 169 142

n = 95412 lloyd 4.74  (0.032) 1235  (0.159) 116.63  (0.660) 464.22 (3.244)

d=>56 kd-tree 068  (0.156) 58.55 (0.996) 83031 (4.945) 334047 (23.562)
alkan 413 (0.012) 6.24 (0.049) 3227 (0.169) 132.39 (0.907)
hamerly | 3.95 (0.011) 5.87  (0.042) [ 28.30 (0.147) 19726 (1.364)

mnist50 iterations a7 249 190 81

n = 60000 lloyd 292 (0.018) 2318 (0.084) 75.82  (0.387) 16200 (1.974)

d =350 kd-tree 4.90 (0.069) 100.09 (0.393) 37157 (1.943) 794.51 (9.780)
alkan 242 (0.005) 7.02 (0.019) 21.58 (0.101) 65.61 (0.660)
hamerly 2.41 (0.004) 4.54 (0.009) 21.95 (0.104) 7734 (0.928)




A big advantage of Hamerly algorithm is its small memory footprint, especially compared with other
accelerated algorithms. Hamerly algorithm consistently has the lowest memory use out of all the acceler-
ated algorithms, and is usually close to the memory used by Lloyd’s algorithm. Compared with Elkan’s
algorithm, which has memory requirements that scale as O(k?), Hamerly algorithm will have much lower
memory footprint for large numbers of clusters. The k-d tree implementation uses a little less than twice
the memory Hamerly algorithm uses.

Table-2 shows the performance of each algorithm. Hamerly algorithm is often more than 10 times
faster in total time than Lloyd’s algorithm. Its fastest out of all the algorithms in most experiments,
including all 8-dimensional and 32-dimensional experiments. On 2-dimensional datasets, k-d trees per-
form very well. However, k-d tree performance degrades quickly as the dimension increases. For the
three datasets that have 50 to 56 dimensions, Hamerly algorithm performs best when & is small, and is
comparable to Elkan’s algorithm for large k.
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