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Abstract

We have a look at two algorithms to accelerate k-means clustering
using cached sufficient statistics data structures: kd-trees and metric
trees for low dimension and high dimension data respectively.

1 Naive k-means algorithm

K-means algorithm partitions the data into k-subsets such that points belonging
to the same subset belong to the same cluster(center). Denoting number of data
points by R, number of dimensions by M and number of centers by k, centroids
after the i-th iteration by C(i) naive k-means algorithm can be summarized as

Initialization: Choose k points randomly to be the initial centers.
Repeat

1. For each point x, find the center in C(i)which is closest to x. Associate x
with this center.

2. Compute C(i+l) by taking, for each center, the center of mass of points
associated with this center.

During each iteration of the algorithm, nearest center query is done k-times for
each of the R times in M dimensions, time taken in one iteration is O(kMR)

2 Low Dimension Data

2.1 Multi Resolution kd Trees [1]

We define a new specialization of kd-trees: multi resolution kd trees. Multi-
resolution kd trees are binary kd trees where each node contains information
about all points contained in a hyper-rectangle h associated with that node.
The hyper- rectangle is stored at the node as two M-length boundary vectors
hmax and hmin. Further each internal node has a “split dimension” and a “split
value” similar to a kd tree. Actual points are contained in the leaf nodes.
We further define the distance between two points d(x, y) as Euclidean distance
between them. For a point x and hyperplane h, d(x, h) is defined as the dis-
tance between x and closest(x, h) where closest(x, h) is x if x ∈ h, otherwise
closest(x, h) is on the boundary of h. This boundary point can be found by
clipping each coordinate of x, to lie within h
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2.2 Algorithm

Definition. Given a hyper-rectangle h, and two centers c1 and c2 such that
d(cl, h) < d(c2, h), we say that c1 dominates c2 with respect to h if every point
in h is closer to c1 than it is to c2 .

Lemma. Given two centers cl, c2, and a hyper- rectangle h such that d(c′, h) <
d(c2, h), the decision problem “does c1 dominate c2 with respect to h?” can be
answered in O(M) time.
Proof Consider the vector ~v = c2 − c1 and look at the extreme point in h in
direction of ~v. If this is closer to c1 than to c2, then any point in h will be closer
to c1 than to c2 and c1 will dominate h(else it will not). This extreme point can
be found out by maximising the inner product 〈v, p〉 such that p ∈ h which can
be done in O(M) time.
We now present a recursive algorithm to update the C(i) in each iteration.

Initialization: h is a hyper-rectangle containing all points. C0 is a set of
k randomly chosen centroids.
Recurse: Update(h,C)

1. If h is a leaf: For each data point in h, find the closest center to it and
update that center’s counters. Return.

2. Compute d(c, h) for all centers c. If there exists one center c with shortest
distance:
If for all other centers c′, c dominates c′ with respect to h:
Update c′s counters using the data in h. Return.

3. Call Update(hl, C) Update(hr, C) on child nodes hl and hr

The algorithm tries to prune the tree(using Step 2) as much as possible so that
number of distance comparisons are reduced for the pruned sub-tree. If we need
to go down till leaf nodes, then this algorithm is slower than the naive k-means
algorithm due to the computational overhead.

Blacklisting Algorithm: Making algorithm faster If in any iteration we
find two centers c1 and c2 such that c1 dominates c2 with respect to h, then we
can eliminate c2 from possible set of centroids to check in h′s children also, as
points in any subset of h will always be nearer to c1 than to c2.

3 High Dimension Data

3.1 Metric Trees [2]

In order to deal efficiently with high dimension data, we introduce a new data
type metric trees where the only assumption they make about the metric is
the satisfaction of triangle inequality. Further each node has two fields npivot

and nradius such that all the points represented by the node are within nradius

distance of the npivot element of the node. Like usual kd-trees, union of elements
of mutually exclusive child nodes make up elements of parent node.
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3.2 Anchors Hierarchy

The usual top-down way of structuring the metric tree would involved finding
the npivot(f1 and f2) for children in the following way: f1 will be the datapoint
in n farthest from npivot and f2 will be datapoint farthest from f1. However,
this is a slow method and we will show a new way of structuring metric tree
which is similar to concept of clustering.
Algorithm: Maintain a list of anchors(each anchor ai having a aipivot and
associated list of points with each anchor such that the all points in the list are
nearest to corresponding anchor’s aipivot than any other anchors pivot element.
We can say that the anchor owns the list of points. Each anchor i has a radius
which the distance of aipivot to the farthest point in its list. Further, the list
of associated points is kept in decreasing order of distance to pivot element for
reducing computations later.
At each iteration, we try to add a new anchor anew. The pivot element anewpivot

is farthest element from pivot element in the anchor with largest radius. Now,
with this pivot element, we try to steal points from existing anchors’ list by
comparing distance of each point from anewpivot and existing anchor’s pivot.

Middle Out Building: For R points, we initially find
√
R anchors. Trying

to keep the radius of nodes minimum, we merge similar nodes(try to minimise
radius of parent node at each step) and build the tree upwards on these

√
R

nodes. Later, we recursively call Anchor hierarchy function these
√
R nodes.

3.3 Algorithm

We present algorithm for efficient k-means clustering where each pass of the
algorithm recurses over the nodes of the metric tree. At each iteration we
maintain the invariant that Cands is a subset of C which contain the possible
owners(nearest centroids) of points in n

Initialization: node n - root node, C = set of centroids, Cands - full set
of centroids
Repeat:KMeansStep(noden,CentroidSetC,CentroidSetCands)

1. Reduce Cands: We consider the point c∗ which is closed to npivot and
then try pruning the set of Cands by comparing distance d(x, npivot) to
d(c∗, npivot) for all elements x in Cands

2. Update statistic of centroids in pruned Cands:

• In case there is only one point left in Cands then we know that this
is nearest centroid to all points in n. Hence its weight is updated
according to all points in n

• In n is leaf node, then we iterate through all points and update the
weights of the nearest possible centroid to the point.

• call KMeansStep on each of child nodes.

The algorithm works better based on the empirical observation that the set
Cands will keep reducing with each iteration. In this case, the number of dis-
tance operation calls will be less compared to naive k-means algorithm.
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4 Results

The first algorithm gives multiple fold speed-up to run k-means on low dimension
data by traversing each node(with extra statistics) of the pruned tree. It however
gives bad results on high dimension(> 8) data.
The second algorithm gave similar speed-ups on low dimension data. On high
dimension data, the speed up turned out to be dependent on the structure
of data: if there is intrinsic structure in the data then we get good speed-ups,
however in case there is no structure to the data i.e. data is uniformly distributed
then we are not able to prune the tree leading to no acceleration in algorithm.
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