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An ordered sequence x1, x2, ...., xn is termed as a data stream if it can be accessed in that order
only. These datsets are generally very large that can not be fit in main memory and are accessed
from secondary storage devices. So, it can be accessed only small number of times due to larger
time required to access them.

Since Main memory is very low compared to data, the algorithm trying to cluster them should
somehow store a summary of previous data and should have enough space left to process remaining
data. Also, to judge the performance of any stream algorithm, we must include number of linear
scans required by it.

Now all the algorithms discussed below are in context of K-median where objective function is
to minimize the sum of distance from nearest center for each point as opposed to square of distance
in K-means.

First I will discuss a clustering framework for streaming algorithms where already existing
algorithms for static data with provable guarantees can be used to obtain provable guarantees in
streaming setting. Then I will discuss Indyk’s algorithm(1999) which is a random-sampling based
algorithm.

1 A Provable Stream Clustering Framework
Firstly I discuss a simple divide and conquer algorithm for K-median without dwelving into stream-
ing setting. Then a modified version of this algorithm which works on streams is discussed.

1.1 Small-Space Algorithm
1. Divide Dataset S into l disjoint pieces X1, ...., Xl

2. for each i find O(k) centers in Xi. Assign each point in Xi to its cosest center.

3. Let X’ be the O(lk) centers obtained in (2) where each center c is weighted by number of
points assigned to it.

4. Cluster X’ to find k centers.

Following are the set of lemmas that help us to give approximation guarantee for above algo-
rithm:

Lemma 1 Given an instance (S,K) of K-median cost(S,S) ≤ cost(S,Q) for any Q.

Lemma 2 Σcost(Xi, Xi) ≤ 2cost(S, S).
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Lemma 3 Let C = Σcost(Xi, Xi) and C* = cost(S,S), then cost(X’,X’) ≤ 2(C+C*)

Now assume that we run (a,b)- approximation algorithm on all Xi in second step and in fourth
step we run a c-approximation algorithm to obtain final set of k centers. Then,

Lemma 4 The approximation factor of small-space algorithm is 2c(1+2b)+2b .

Note that proofs of above 4 lemmas have already been discussed in class.
Now authors suggest that instead of doing reclustering by dividing the data only once, we can

do it for some constant number of times. They call this recusrsive algorihm smaller-space.

Lemma 5 For constant i, Algorithm Smaller-space(S,i) gives a constant factor approximation to
k-median problem.

The proof of above lemma can be shown by writng recurrence of cost at each step and solving
it. Final cost comes out to be c(2(2b+ 1))i which is constant given that i is constant.

For above algorithms, we know that lk ≤ M and n/l ≤ M due to memory constraints. It is not
possible always for some l to exists. So, we can not say that above framework would always be
valid. So, we will make an assumption that M is not too small, specifically, it is of some O(nε) and
then a modified version of above algorithm gives guaranteed approximation for the problem and is
valid within the specified assumption.

1.2 Data Stream Algorithm
Let m =

√
M

1. Input first m points,use bicriterion algorithm to reduce it to O(k) centers(say 2k). Running
bicriterion algorithm requires O(f(m)) space which is O(m2) for a primal-dual algorithm.

2. Repeat step-1 for m/2k iterations. Now we have m first level medians. So, just cluser these
m points first and then continue. In general, whenever m medians for level-i are available
cluster them into 2k level-i+1 ceners.

3. At the end use c-approximation algorithm to give final set of k centers

In above algorithm, the maimum number of levels required are O(log(n/m)/log(m/k)). We can
safely assume that k�m. Let m=nε . Then number of levels are O(1/ε). So, maximum memory
required to store all the points at all levels are m*number of levels = log(n) which according to our
assumption can be accommodated in memory. Hence this algorithm is valid in all settings.

Now there exists a local search based linear space bicriterion algorithm which runs in quadratic
time[2]. So, author suggests to use it. Then we have the following theorem.

Theorem 6 We can solve the kMedian problem on a data stream with time O(n1+ε) and space
O(nε) up to a factor 2O(1/ε).

The proof of above theorem is straightforward using Lemma 5. Note that in theorem M=nε.
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1.3 Framework in retrospect
The framework that we have discussed is composed of sequence of algorithms. We just have to
choose an algorithm for compressing the points into O(k) centers and then finally use a contant
factor approximation. Thus, we have proved theoretically that any algorithm for k Median problem
that work well on static chunk of data can be used in this recursive manner to work on data stream
still giving good bounds for the solution. Also, note that though we have discussed the frame-
work with respect to algorithms with proven guarantees, we can also use it for any algorithm that
practically works well on staic data.

2 Indyk’s Algorithm
This is one of oldest algorithm which works on data streams. The main drawback of this algorithm
is that it is a 2 pass algorithm, i.e., it requires 2 linear scans of the data which leads to high running
time.

The main intution behind the algorithm is that a large enough random sample from whole of
data is a good representation of all data and solving K-median problem on this sample should work
well for whole of data unless some cluster is very far from rest of clusters and has very few points
in the data. Hence we do second clustering to cover such outliers.

Algorithm (Data S, confidence δ) :

1. Let S’ ⊂ S be a random subset of size s

2. run an (a, b) approximation algo on S’ to get O(ak) medians T’

3. Let S” ⊂ S be the 8kn log(k/δ) points farthest from T’

4. run an (a, b) approximation algo on S” to get O(ak) medians T”

5. Output T’∪ T”

Let s=
√

8knlog(k/δ). Then we require O(8kn log(k/δ)) memory which is reasonable to expect.

Theorem 7 With a probability ≥ 1− 2δ, above alorithm is (2a, (1+2b) (1+2/δ)) approximation.

We will prove above theorem through a seies of lemma. Let T* = {t1∗, ....., tk∗} be the optimal
medians and let S1, ....., Sk be the corresponding optimal clusters. Let L be the large clusters such
that :
L = {i:|Si| ≥ (8n/s)log(k/δ) }.
The sample S’ contains point S ′

i = Si ∩ S ′fromclusterSi.

Lemma 8 with probability ≥ 1− δ, for all i ∈ L : |S ′
i| ≥ (s/2n) ∗ |Si|.

Proof: Using Chernoff bounds we can say for all i ∈ L: that Pr{|S ′
i| ≤ (s/2n) ∗ |Si|} ≤ δ/k. Now

use multiplicative chernoff bound to get the proof.

Lemma 9 with probability ≥ 1− δ, cost(S’,T*) ≤ (1/δ)* (s/n) cost(S,T*).

Proof: The expected value of cost(S’, T*) is exactly (s/n)cost(S, T*). The lemma follows by
Markovs inequality.

Now Assume that high probability events of Lemma 8 and 9 hold.
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Lemma 10 cost(S’, T’) ≤ 2b* ( 1/δ) * (s/n) * cost(S, T*).

Proof: Using Lemma 1 and b approximation, cost(S’, T’) ≤ 2b* cost(S’, T*). Now use Lemma 9.

Lemma 11 cost(∪i∈L Si,T’) ≤ cost(S,T*) * (1+2*(1+2b)*(1/δ)) .

Proof. Let d(x,y) be the distance between x and y. and if y is a set then it is distance of x from
closest point in that set. Using traingle inequality, we can write that d(ti∗,T’) ≤ d(ti∗, y) + d(y,T’)
for every point that belongs to S ′

i. Averaging it over all points of S ′
i

d(ti∗, T ′) ≤ (1/|S ′
i|)Σd(ti∗, y) + d(y, T ′)

Now bounding the cost of large clusters wih respect to T’

cost(∪i∈LSi, T ′) ≤
∑
i∈L

∑
x∈Si

(d(x, ti∗) + d(ti∗, T ′))

cost(∪i∈LSi, T ′) ≤ cost(S, T∗) +
∑
i∈L

|Si|d(ti∗, T ′)

Now using above averaged traingle inequality and using Lemma 8 we get,

cost(∪i∈LSi, T ′) ≤ cost(S, T∗) + (2n/s)
∑
y∈S′

d(ti∗, y) + d(y, T ′)

cost(∪i∈LSi, T ′) ≤ cost(S, T∗) + (2n/s)(cost(S ′, T∗) + cost(S ′, T ′)))

Now use Lemma 9 and 10 to get the result.
From the algorithm it is clear that T” takes care of all the points in S”. So, we want to find a

bound over S\S” with respect to T’.

Lemma 12 cost(S\S”, T’) ≤ cost(S,T*)* (1+2*(1+2b)*(1/δ)) .

Proof: As there can be atmost k small clusters, maximum number of points in small clusters can
be (8kn/s) log(k/δ). This implies that number of points in large clusters is greater than or equla to n
- (8kn/s) log(k/δ).

Now S\S” contains exactly n - (8kn/s) log(k/δ) points that are closest to T’. Hence we can say
that cost(S\S”, T’) ≤ cost(∪i∈L Si,T’). Thus proof follows from Lemma 11.

Lemma 13 cost(S”, T”) 2b * cost(S, T*).

The proof of above lemma is straightforward.
Now summing Lemma 12 and Lemma 13 proves our theorem.
Though above algorithm is not as good as when run on a data stream but on a static chunk of

data, this algorithm is very useful and is often used within other data stream algorithms as it runs
very fast.
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