
COL870: Clustering Algorithms

Hardness of k-means clustering

Ishaan Preet Singh & Surbhi Goel

May 1, 2015

Abstract

We discuss proofs of the NP-hardness of k-means clustering, specifically for 2-means[1] and planar
k-means[2][3].

1 Introduction

We can state the k-means clustering problem formally as follows -
Input: A set of points x1, x2, . . . , xn ∈ Rd and number of clusters k
Output: A partition of the points into clusters C1, C2, . . . , Ck, and corresponding enters µ1, µ2, . . . , µk
minimising

k∑
j=1

∑
xi∈Cj

‖xi − µj‖2

In an optimal solution the centre µj of a cluster is simply the mean of the points in the cluster.
In this case, using the fact that E‖X − Y ‖2 = 2E‖X − EX‖2, we can remove the centres from the
equation. The k-means cost function now becomes -

k∑
j=1

1

2|Cj |
∑

xi,x
′
i∈Cj

‖xi − xi′‖2

2 Hardness of 2-means Clustering

We will initially establish the hardness of k-means when k = 2. We will reduce 3Sat to NaeSat*
and reduce that further to Generalised 2-means and then prove that our constructed problem can
be embedded in the euclidean space.

2.1 Hardness of NAESAT*

NaeSat* is a special case of Not-all-equal 3Sat, and we will prove that it is hard by a reduction
from 3Sat.
Input: A boolean 3CNF formula φ(x1, . . . , xn) such that

1. Each clause contains exactly 3 literals.

2. Each pair appears together in a clause at most twice and if appears twice then once as {xi, xj}
or {xi, xj} and once as {xi, xj} or {xi, xj}

Output: true if ∃ an assignment in which each class has one or two satisfied literals (i.e. not all
equal) else false.

1

Reduction from 3SAT

We are given an input φ(x1, . . . , xn) to 3SAT.

1. Construct intermediate φ′: For a variable xi that occurs in k clauses, create k variables
xi1, xi2, . . . , xik and replace each occurrence of xi by one of the new variables. Also, add
clauses (xi1 ∨xi2), (xi2 ∨xi3), . . . (xik ∨xi1) which ensure that all the new variables for xi have
the same value. φ′ is obviously equivalent to φ and 2 variables never occur together in a clause
more than once.

2. Constructing φ′′: In φ′, let the number of 2 variable clauses be m and the number of 3 variable
clauses be m′. Create new variables s1, s2, . . . , sm and f1, f2, . . . , fm+m′ and f .
Given the jth 3 literal clause, (α ∨ β ∨ γ) replace it with (α ∨ β ∨ sj) and (sj ∨ γ ∨ fj).
Given the jth 2 literal clause (α ∨ β) replace it with (α ∨ β ∨ fm+j).
Also, add clauses (f1 ∨ f2 ∨ f3), (f2 ∨ f3 ∨ f4), . . . , (fm+m′ ∨ f1 ∨ f) which ensure that all fis
have the same value (if f is false).
Now, all clauses have 3 literals each, all fis must have the same value in a satisfying assignment
(if f is false), and only (fi, f) occur more than once in a pair and they satisfy the required
conditions for NaeSat*.

Lemma 1 φ′ is satisfiable if and only if φ is not-all-equal satisfiable.

Proof. If φ′ is satisfiable, keep the same values of variables for φ′, set all fis and f as false, and
for a 3 variable clause (α ∨ β ∨ sj) set sj as false if both α and β are false, then set sj to true,
satisfying the first clause, while (sj ∨ γ ∨ fj) is satisfied because γ must be true. Else, set sj to false.
The first clause is already satisfied and is not-all-equal because of sj . The second is satisfied because
of sj and is not-all-equal because of fj . The case of 2 literal clauses is simple because all fis in them
are false, while at least one of α or β must be true.
Now, suppose φ′′ is not-all-equal satisfiable. Note that if an assignment of variable is not-all-equal
satisfiable, we can flip all assignments and the satisfiability remains true. This is because at least
one of the variables in every clause was false (and not all were false), meaning not all will be true,
and at least one will be. Let us assume that f is false (if it isn’t flip all assignments). Now, all fis
are equal. If they aren’t false, flip all assignments. This means all fis are now false. Hence, all 2
literal clauses are now satisfied in φ′. In the 3 literal clauses, since fj is false, at least one of α, β or
γ must be true meaning (α ∨ β ∨ γ) is satisfied.

2.2 Hardness of Generalised 2-means

In the generalised k-means problem instead of using the Euclidean distances between points, we
assume that we are given an nxn distance matrix D and we try and cost function -

2∑
j=1

1

2|Cj |
∑

xi,x
′
i∈Cj

Dii′

Reduction from NAESAT*

We are given an instance of NaeSat* with input φ(x1, . . . , xn) and we construct a generalised 2-
means problem with 2n points, with points corresponding to x1, x2, . . . , xn, x1, x2, . . . , xn. We define
α β as implying that α and β occur together in a clause or α and β occur together. Two different
clauses can not imply that α β because of our input restrictions on pairs. Define -

Dαβ =

0 if α = β

1 + ∆ if α = β
1 + δ if α ∼ β
1 otherwise

Here, 0 < δ < ∆ < 1 and 4δm < ∆ ≤ 1 − 2δn are constraints on δ and ∆, where m is the number
of clauses. δ = 1/(5m+ 2n) and ∆ = 5δm is one such valid setting.

2

Lemma 2 If φ is a satisfiable instance of NaeSat*, then the above construction admits a gener-
alised 2-means clustering of cost c(φ) = n− 1 + 2δm.

Proof. Take all variables assigned true in one cluster and all variables with value false in the other.
Each cluster must have n points. Within a cluster there are no variables such that α = β. Hence,
the distances are either 1 or 1 + δ. Each clause is necessarily split among the clusters, because if
it had all 3 of its variables in one cluster they would either all be true (not NaeSat*) or not be
satisfiable. Hence, each clause has at least one variable in C1 and one in C2. This means that it
contributes either one pair of α β points to C1 or one pair to C2. Hence, each clause results exactly
one pair of such points, meaning there are m such points.

c(φ) =
1

2n

∑
i,i′∈C1

Dii′ +
1

2n

∑
i,i′∈C2

Dii′ = 2.
1

n

((
n

2

)
+mδ

)
= n− 1 + 2δ

This is true because for every pair of points the distance will either be 1 or 1 + δ and it will be 1 + δ
m times.

Lemma 3 For any 2-clustering C1, C2, if C1 contains both a variable and it’s negation, then the
cost is at least c(φ).

Proof. Let C1 have n′ points. Since all distances are at least 1 and C1 contains a pair of points
with distance 1 + ∆, the cost of the clustering is at least

1

n′

((
n′

2

)
+ ∆

)
+

1

2n− n′

(
2n− n′

2

)
= n− 1 +

∆

n′
≥ n− 1 +

∆

2n
≥ c(φ)

Lemma 4 If D admits a 2-clustering of cost ≤ c(φ), then φ is a satisfiable instance of NaeSat*.

Proof. By the previous lemma, neither of the clusters have both a variable and a negation,
implying that they are split equally across the clusters. Hence, |C1| = |C2| = n. Now, cost of the
clustering can be written as -

2

n

((
n

2

)
+ δ

∑
clauses

(1 if clause is split between C1 and C2; 3 otherwise)

)
.

For the cost to be ≤ c(φ), all of the clauses should be split between C1 and C2. If a clause had all
3 variable in one cluster then it would form 3 pairs which would make the cost more than c(φ), as
for c(φ) each clause only contributed one such pair. Hence, setting all variables in C1 as true and
the rest as false will mean φ is NaeSat*.

2.3 Embeddability of the Construction

We will now show that the D matrix we constructed is ’embeddable’ meaning that there exists
corresponding points xα ∈ R2n such that Dαβ = ‖xα − xβ‖ for all α, β. To prove this we will use
the following theorem from [4]

Theorem 5 Let H denote the matrix I − (1/N)11T . An NxN matrix is embeddable if and only if
−HDH is positive semi definite.

Lemma 6 An NxN matrix is embeddable if and only if uTDu ≤ 0 for all u ∈ Rn such that u.1 = 0.

Proof. The range of v → Hv is {u ∈ Rn : u.1 = 0}. Hence,

−HDH is positive semidefinite ⇐⇒ vTHDHv ≤ 0 for all v ∈ Rn

⇐⇒ uTDu ≤ 0 for all u ∈ Rn such that u.1 = 0

Lemma 7 D(φ) is embeddable

3

Proof. D(φ) is a 2nx2n matrix constructed from φ(x1, x2, . . . , xn), with the first n indices
corresponding to x1, x2, . . . , xn and the next n corresponding to x1, x2, . . . , xn.
Pick any u ∈ R2n such that u.1 = 0. Define u+ as the first n coordinates of u and u− as the last n
coordinates.

uTDu =
∑
α,β

Dαβuαuβ

=
∑
α,β

uαuβ −
∑
α

u2
α + ∆

∑
α

uαuα + δ
∑
α,β

uαuβ(1 if α ∼ β, 0 otherwise)

≤

(∑
α

uα

)2

− ‖u‖2 + 2∆(u+u−) + δ
∑
α,β

|uα||uβ |

Now,
∑
α

uα = 0 since u.1 = 0 and we can use (a+ b)2 > 0 for the third and fourth term. Hence,

uTDu ≤ −‖u‖2 + ∆(‖u+‖2 + ‖u−‖2) + δ

(∑
α

|uα|

)2

≤ −(1−∆)‖u‖2 + 2δ‖u‖2n

The last step used the Cauchy-Shwartz inequality on the last term. Now, this quantity is always
negative since 2δn ≤ 1−∆.

3 Hardness of Planar k-means Clustering

In this section, we restate the proof of the hardness of k-means clustering for d = 2 dimensions given
in ([3] uses a different reduction to prove the same). The hardness result holds for k = Θ(nε), for
any ε > 0, where n is the number of points and k is the number of clusters. We use the decisional
version of weighted k-means clustering problem. W.l.o.g. we can replace a point x of weight w with
w distinct points within very close distance of x.

Definition 1 Given a multiset S ⊂ Rd, an integer k and L ∈ R, is there a subset T ⊂ Rd with
|T | = k such that

∑
x∈Smint∈T ||x− t||

2 ≤ L?

It is clear that the above problem is in NP as any solution can be verified in randomized polynomial
time. We will prove that this problem is in fact NP-complete for d = 2 by reduction from Exact
Cover by 3-Sets (X3C) which is known to be NP-complete.

Definition 2 Given a finite set U containing exactly 3n elements and a collection C = {S1, S2, ..., Sl}
of subsets of U each of which contains exactly 3 elements, are there n sets in C such that their union
is U?

3.1 Preliminary Results

Consider the grid Hl,n as shown in the figure. The grid consists of l rows indexed by Ri (1 ≤ i ≤ l)
alternated with l− 1 rows indexed by Mi (1 ≤ i ≤ l− 1). Each Ri consists of 6n+ 3 points whereas
row Mi consists of 3n points. The positions, labels and weights are as indicated in the figure.

4

Set the following values:

h = w1/3, d = 2

√
w + 1

w
, ε =

1

w2
, α =

8

w
− 1

w2(w + 1)
, k = l(3n+ 2) + (l − 1)3n

Definition 3 We define two possible (3n+ 2)-clusterings of Ri(1 ≤ i ≤ l).
A For 1 ≤ j ≤ 3n, the j-th cluster of Ri is {ri,2j−1, ri,2j}. Also it has the clusters {si} and
{ri,6n+1, fi}.
B For 1 ≤ j ≤ 3n, the j-th cluster of Ri is {ri,2j , ri,2j+1}. Also it has the clusters {si, ri,1} and
{fi}.

Definition 4 We say that a k-clustering of Hl,n is nice if each mi,j is a singleton cluster, and each
Ri is grouped in an A-clustering or in a B-clustering.

Lemma 8 A nice k-clustering of Hl,n with t rows grouped in an A-clustering costs L1 − tα where
L1 = lw(6n+ 4).

Proof. Clustering A and B differ in terms of cost due to the clusters {ri,6n+1, fi} and {si, ri,1}
respectively since the singletons do not add to the cost and the remaining 3n clusters consist of 2
points of weight w each separated by distance 2. Cost of the latter by simple calculation works out

to be (2w)(3n) = 6nw. Due to the former different clusters, A pays w3

w2+w
(d− ε)2 = 4w − α and B

pays w3

w2+w
d2 = 4w. Hence, the total cost is t(4w − α) + (l − t)(4w) + 6nwl = L1 − tα.

Lemma 9 For w = poly(n, l) large enough, any non-nice k-clustering of Hl,n costs at least L1 +
Ω(w). On the other hand, any nice k-clustering of Hl,n costs at most L1.

Proof. The second statement follows from the above lemma as the cot of a nice clustering is
bounded by L1. For the first part, we will consider the following cases:
Case 1: Cluster contains points from different rows.
Since the rows are separated by distance Θ(h), the cost ill be at least Ω(hw) = Ω(w4/3).
Case 2: Cluster contains 2 points from row Mi.
The cost of such a cluster will be least when the two points are consecutive and even for this case
the cost works out to be 8w2.
In both cases, for w = poly(n, l) large enough, the cost is more than L1 + Ω(w) as L1 is linear in w.
This implies that each mi,j is a singleton and no element from different rows are in the same cluster.
Case 3: Ri contains a singleton cluster and rest grouped in 3n+ 1 pairs.
Since Ri is not nice, the singleton must be some ri,j while the points si and fi are in 2 size clusters.
The overall cost for this arrangement simply works out to be 4w+4w−α+(3n−1)(2w) = (6n+6)w−α
while a nice clustering costs at most (6n + 4)w. For large w, α is very small, cost of this non-nice
clustering exceeds that of a nice clustering by a factor of w.
Case 4: Ri is not nice and contains clusters of cardinality m ≥ 3.
Consider a cluster of cardinality m ≥ 3. In a nice clustering, these m points would have used
at most dm

2
e clusters (assume that the m points are continuous for least cost), so the best we

can do is by using dm
2
e − 1 singletons. Using simple calculations, we can show that a cluster of

cardinality m costs at least w
3
m(m2 − 1). So this case would cost at least w

3
m(m2 − 1). Whereas

a nice clustering would cost at most w(m + dm
2
e − 1) if si or fi are not among the points else

w(m + dm
2
e − 1) + 4w = w(m + dm

2
e + 2) (consider B clustering as it has higher cost and we are

upper bounding). In both these cases, the cost of non nice is strictly worse than nice clustering.

3.2 Reduction

In this section we will describe the main reduction i.e. we will build a decisional instance of weighted
k-means with a certain k and a cost limit L ∈ R for a given instance of X3C.

5

To do so we use Gl,n, a slight modification of above mentioned Hl,n as shown in figure. The main
difference is that the position of each mi,j is not perfectly vertically aligned as before. Trivially,
this modification preserves all the lemmas from the previous section (distance between the two rows
remains same). In the figure,

λ = h

(
2(w2 + 1)

w(2w + 1)

)1/2

= Θ(h).

We define set S = Gl,n ∪ X where X =
⋃l−1
i=1Xi and it depends on the collection C of the X3C

problem. The points in the figure xi,j , x
′
i,j , yi,j , y

′
i,j for each i, j are possible points in X. Their

presence in X is governed by the following rules:

• xi,j ∈ Xi iff j 6∈ Si; x′i,j ∈ Xi iff j ∈ Si
• yi,j ∈ Xi iff j 6∈ Si+1; y′i,j ∈ Xi iff j ∈ Si+1

We will solve the k-means problem on the defined S with k as in previous section. The intuition for
the reduction is that the arrangement of the clusters defines the sets to choose in the X3C problem
and the added points take care of the disjoint property of the selected sets. To formally show the
reduction, we will define some properties about the points in X.

Definition 5 A cluster C is good for a point z 6∈ C if adding z to C increases the cost by exactly
h2 2w

2w+1
.

Lemma 10 For any 1 ≤ j ≤ 3n,1 ≤ i ≤ l − 1, the following holds:

• The clusters {mi,j}, {ri,2j−1, ri,2j}, and {ri,2j , ri,2j+1} are good for xi,j.

• The clusters {mi,j}, {ri+1,2j−1, ri+1,2j}, and {ri+1,2j , r+1i,2j+1} are good for yi,j.

• The clusters {mi,j} and {ri,2j , ri,2j+1} are good for x′i,j.

• The clusters {mi,j}, and {ri+1,2j , ri+1,2j+1} are good for y′i,j.

Proof. The result is straightforward through simple calculations.

Lemma 11 Consider any optimal k-clustering of Gl,n ∪X. Then for w = poly(n, l) large enough,

1. the clustering induced on Gl,n is nice;

2. points in X are in different good clusters.

In addition, if there are t rows Ri grouped in an A-clustering, then this clustering costs L1 +L2− tα
where L2 = 6n(l − 1)h2 2w

2w+1
.

Proof. Using lemma 1 and 3, we can define a clustering for S with cost L1 + L2. To do so, we
start with a nice clustering of Gl,n with all rows grouped in B-clustering (cost is L1) and for each
xi,j(x

′
i,j), we add it to the j-th cluster of Ri and put yi,j(y

′
i,j) to the cluster {mi,j}, both are good

clusters for the corresponding points. Since all points are added to good clusters, the cost increase
from these points is exactly L2 resulting in the total cost of L1 + L2. Thus, the optimal clustering
must have cot ≤ L1 +L2. By lemma 1, cost of any non-nice clustering of Gl,n is at least L1 + Ω(w),
which for large w exceeds L1 + L2. This proves 1.

Now, we need to show that the points are in different good clusters. If we assign a point to a
non-good cluster, we will have to compensate by increasing the number of rows in A-clustering. By

6

lemma 1, we can decrease the cost by maximum lα (note that α is O(1
w

)). Adding a point x to a

cluster costs at least Ω(h2) = Ω(w2/3) (from figure), for large w, cost of assigning to a non-good
cluster can not be compensated resulting in a higher cost clustering. Thus, each x ∈ X is assigned
to a good cluster. Also, a cluster does not remain good after adding a point, implying that points
in X are assigned to different clusters. Cost of this clustering is direct from lemma 1 and 3.

Lemma 12 The set S = Gl,n ∪X has a k-clustering of cost less or equal to L = L1 + L2 − nα if
and only if there is an exact cover F ⊆ C for the Exact Cover by 3-sets instance.

Proof. We give an overview of the proof without giving complete details. Refer [2] for details.
Consider an optimal k-clustering of S with cost less or equal to L. The optimal clustering must

be of the form as in lemma 4. This lets us define F = {Si : Ri is grouped in an A-clustering} such
that |F| ≥ n. To show this to be an exact cover, we claim that for i such that Si ∈ F and j ∈ Si,
for all i′ 6= i, Ri′ is grouped as a B-clustering or j 6∈ Si′ . Assuming this to be true, all sets in F are
disjoint, thus union of n of these is S and F is an exact cover. To prove the claim, the high level
idea is to use induction to show that the jth-cluster of each Ri′ is a good cluster which implies the
claim. To do this we consider the possible clusters the points xi′,j(xi′,j) and yi′,j(y

′
i′,j) have to be

assigned to given x′i,j is assigned to {mi,j} and y′i− 1, j is assigned to {mi−1,j}.
For the converse, we construct the clustering by assigning Ri as an A-clustering if Si ∈ F and

B-clustering otherwise. We then assign points appropriately to good clusters (depending on the
index of the sets in which each element belongs to).

In the above analysis, we have k = Θ(nγ) for some 0 < γ < 1. The last thing that remains to
be done is to generalize this to any ε > 0.

Theorem 13 The k-means clustering problem is NP-hard for k = Θ(nε), for any ε > 0.

Proof. Fix an ε > 0 and take a hard instance with n points and k centers where k = Θ(nγ).
Case 1 (γ < ε): Construct a new instance with nε points added very far from the original problem
as well as from each other. Adding nε centers gives the optimal solution as the optimal for the
original plus each of the added points. Thus, this is a hard problem for m = n+ nε = Θ(n) points
and k′ = k + nε = Θ(nε) centers.
Case 2 (γ > ε): Construct a new instance with nγ/ε points added very far from the original problem
and very close to each other. Adding 1 center gives the optimal solution as the optimal for the original
plus one with the cluster of new points. Thus, this is a hard problem for m = n + nγ/ε = Θ(nγ/ε)
points and k′ = k + 1 = Θ(nγ) = Θ(mε) centers.

References

[1] S. Dasgupta. The hardness of k-means clustering. Technical Report CS2007-0890, University of
California, San Diego, 2007.

[2] Andrea Vattani. The hardness of k-means clustering in the plane. manuscript, 2009.

[3] M. Mahajan, P. Nimbhorkar, K. Varadarajan. The Planar k-Means Problem is NP-Hard. Lecture
Notes in Computer Science 5431: 274285, 2009.

[4] I.J. Schoenberg. Metric spaces and positive definite functions. Transactions of the American
Mathematical Society, 44:522?553, 1938.

7

