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1 PROBLEM STATEMENT

Definition 1. A λ - approximate metric d satisfies following relaxed triangle inequality

For any sequence of points
x0, x1, x2...xm

d(x0, xm) ≤λ∗ ∑
0≤i<m

d(xi , xi+1)

holds.

1.1 PROBLEM STATEMENT

Objective of online median problem is to output a total ordering on U . So,if we want to solve
k-median problem, we pick first k elements of this ordering

• Cost function is same as that of k-median problem

• Input : A set of points U and λ - approximate metric d

• Output : A total ordering on U

Definition 2. Competitive Ratio : It is maximum over all possible choices of input instances and
k, of ratio of cost of center given by first k element of this ordering to that of optimal k centers.
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2 ALGORITHM

2.1 DEFINITIONS

• Let
λ,α,β,γ

denote four real numbers satisfying following inequalities

λ≥ 1

α> 1+λ
β≥ λ(α−1)

α−λ−1

γ≥ (
α2β+αβ
α−1

+α)λ

• Value of ball A = (x,r ) is ∑
y∈A

(r −d(x, y))∗w(y)

• Child of ball A = (x,r ) is any ball (y, r
α ) such that d(x, y) ≤βr . Note that (x, r

α ) is also a
child of A.

• i sol ated(x,φ) is (x,max y∈U d(x, y))

• i sol ated(x, X ),where X is non-empty set, is (x, d(x,X )
γ )

• For any non-empty list σ, head(σ) and tail(σ) denote first and last element of list
σ,respectively

2.2 ALGORITHM

Let Z0 = φ. For i = 0 to n-1, execute the following steps

1. list σi = {A}, where A is maximum value ball in {i sol ated(x, Zi )|x ∈U }

2. while t ai l (σi ) has more than one child, append its maximum value child at the end of
σi .

3. Zi+1 = Zi
⋃

{center (t ai l (σi ))}.

3 COMPETITIVE RATIO ANALYSIS

We will try to prove the following theorem, which bounds the ratio of cost between chosen
centers and any arbitrary set of centers by 2λ(γ+1).

Theorem 1. For any configuration X, cost (Z|X |) ≤ 2λ(γ+1)cost (X )
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3.1 SOME MORE DEFINTIONS

• Let zi is added in i th iteration.

• Cost(X,Y) =
∑

y∈Y d(y, X )∗w(y)

• Let cell(x,X) for any point x ∈ X is {y |y ∈U ,d(y, x) = d(y, X )}

• For any configuration X, point x in X and a set Y, in(x,X,Y) is cel l (x, X )
⋂

i sol ated(x,Y )
and out(x,X,Y) is cel l (x, X ) \ i n(x, X ,Y ).

• For any configuration X and a set Y, in(X,Y) is
⋃

x∈X i n(x, X ,Y ) and out(X,Y) is U \
i n(X ,Y ).

3.2 MAIN LEMMAS

Notice that we can rewrite cost (Z|X |,U ) as cost (Z|X |, i n(X , Z|X |))+cost (Z|X |,out (X , Z|X |)) and
cost (X ,U ) as cost (X , i n(X , Z|X |))+cost (X ,out (X , Z|X |)). Now Using lemma 2,4 and 5, we can
obtain the theorem mentioned above.

Lemma 1. For any configuration X,point x ∈ X, and point y in out(x, X , Z|X |), d(y, Z|X |) ≤
λ(γ+1).d(y, X ))

Lemma 2. cost (Z|X |,out (X , Z|X |)) ≤λ(γ+1).cost (X ,out (X , Z|X |))

Lemma 3. For any configuration X and a point x in X, cost (Z|X |, i n(x, X , Z|X |)) ≤λ(γ+1)[cost (X , i n(x, X , Z|X |))+
value(i sol ated(x, Z|X |))]

Lemma 4. cost (Z|X |, i n(X , Z|X |)) ≤λ(γ+1)[cost (X , i n(X , Z|X |))+∑
x∈X value(i sol ated(x, Z|X |))]

We can obtain lemma 1 and 3 by writing relaxed triangle inequality and using definitions of
i n(X , Z|X |) and out (X , Z|X |). Lemma 2 and 4 can be obtained by summing up the equations in
lemma 1 and 3 over all x ∈U .

Lemma 5. For any configuration X,
∑

x∈X value(i sol ated(x, Z|X |)) ≤ cost (X )

.

3.3 PROOF OF LEMMA 5

3.3.1 OVERVIEW OF PROOF

Definition 3. A ball (x,r) is covered iff d(x, X ) < r

Lemma 6. For any uncovered ball A, cost (X , A) ≥ value(A)

Now to prove lemma 5, we will try to map element of X to some uncovered ball in {σi ,0 ≤
i < k}. Let π be this mapping. We will try to ensure that these uncovered ball satisfy following
properties.

1. For any pair of distinct points x and y in X, π(x)
⋂
π(y) =φ.
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2. For any point x in X, value(π(x)) ≥ value(i sol ated(x, Zk )).

Notice that by property 1 and lemma 6, we have cost (X ) ≥∑
x∈X value(π(x)). By property 2,

we have that
∑

x∈X value(π(x)) ≥∑
x∈X value(i sol ated(x, Z|X |)). This will give prove lemma

5.
In order to satisfy property 1, we first prune all the list such no two ball in two distinct

list intersect with each other. By intersection of two balls (x,r) and (y,s), it is meant that
d(x, y) ≤ r + s. To do pruning, we make use of following lemmas,

Lemma 7. Let A = (x,r) belong to σi . Then, d(x,Zi ) ≥ γr

If A is head(σi ), then above lemma is true by defintion. For any arbitrary element in list, we
can prove by induction on its position in the list.

Lemma 8. Let A = (x,r) belong to σi and B = (y,s) belong to σ j . If i < j and d(x, y) ≤ r + s,then
following holds

1. r adi us(head(σi )) ≤ r
α

2. A 6= t ai l (σi )

3. the successor A in σi ,call it C, satisfies value(C ) ≥ value(head(σ j ))

Let τi be the list obtained after pruning. In a single pruning step, if some ball A in σi

intersect with some ball B in σ j , we set τi to suffix of σi starting at the succesor of A in si g mai .
Notice that since A 6= t ai l (σi ), succesor of any such A always exist. Then following holds,

Lemma 9. Let A = (x,r) belong τi and B = (y,s) belong to τ j .Then if i<j, d(x,y) > r+s

Lemma 10. Each sequence τi is non-empty

Both lemmas follow from definition of the pruning.
Following lemmas establish relationship between value(head(τi )) and value(isolated(x,Zk )).

Lemma 11. Let x be a point and assume that 0 ≤ i < j ≤ n.Then value(isolated(x,Zi )) ≥
value(isolated(x,Z j ))

This is trivially true because Zi ⊂ Z j .

Lemma 12. Let x be a point and assume that 0 ≤ i < k.Then value(head(σi ))≥ value(isolated(x,Zk ))

If x ∈ Zi , then RHs is zero, so we have nothing to prove. Else,
value(head(σi )) ≥ value(i sol ated(x, Zi )) ≥ value(i sol ated(x, Zk )), by using definition

of head of σi and lemma 11.

Lemma 13. Let x be a point and assume that 0 ≤ i < k.Then value(head(τi ))≥ value(isolated(x,Zk ))

We prove that the claim holds before and after each iteration of the pruning procedure.
Initially, τi =σi and the claim holds by Lemma 12. If the claim holds before an iteration of the
pruning procedure, then it holds after the iteration by part 3 of Lemma 8.
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3.3.2 MAPPING CONSTRUCTION

Let I denote set of all indices i in {k} such that some ball in τi is covered.
Step 1:

1. Map each i in I to to a point x ∈ X belonging to last covered ball in τi

2. Map each i in {k} \ I to any unmatched point in X.

Step 2:

1. Map each x that is matched to an index i in {k} \ I to head(τi ).

2. Map each x that is matched to an index i in I to successor of last covered ball in τi . If last
covered ball is tail(τi ), then map x to A = (x,0).

Let π be the final mapping. Now property 1 holds because in pruned lists, now two balls
intersect. For property 2, it is each to see that for each x that is matched to an index in {k} \ I ,
property 2 is true using lemma 13. Otherwise, if the last covered ball in τi is the tail and
x ∈ t ai l (τi ) , then tail will have another child. This implies that x is the center of tail and
x ∈ Zi+1 , so RHS is 0. If not , then predecessor of π(x), say (y,r), exists and contains x. Consider
a ball B = (x, r

α ). Let C = (x,s) = i sol ated(x, Zk ). Then, we claim that r
α ≥ s, which implies C ⊂ B

and value(B) ≥ value(C ). First d(x, zi ) ≥ γs, by definition of C. Also ,

d(x, zi ) ≤λ[d(x, y)+d(y, zi )]

≤λr +βλ(r + r

α
+ ...)

≤ (1+ αβ

α−1
)λr

(3.1)

Last quantity is less than γr
α by definition of γ. This proves the fact that mapping that we

created satisfies both properties and hence proof of lemma 5 is complete.
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