
Accelerating Exact k-means Algorithms with Geometric Reasoning

Dan Pelleg and Andrew Moore
School of Computer Science, Carnegie Mellon University

(dpelleg,awm}@cs.cmu.edu

Abstract

We present new algorithms for the k-means clustering
problem. They use a new kind of Icd-tree traversal algorithm
supplemented with a novel pruning test to give sublinear
cost both in the number of datapoints and in the number
of centers. The k&trees are decorated with extra “cached
sufficient statistics” as in [3]. Sufficient statistics are
stored in the nodes of the ,&-tree. Then, an analysis
of the geometry of the current cluster centers results in
great reduction of the work needed to update the centers.
Our algorithms behave exactly as the traditional &means
algorithm. Proofs of correctness are included. The iEd-
tree can also be used to initialize the k-means starting
centers efficiently. Our algorithms can be easily extended to
provide fast ways of computing the error of a given cluster
assignment, regardless of the method in which those clusters
were obtained. We also show how to use them in a setting
which allows approximate clustering results, with the benefit
of running faster.

We have implemented and tested our algorithms on both
real and simulated data. Results show a speedup factor of up
to 170 on real astrophysical data, and superiority over the
naive algorithm on simulated data in up to 5 dimensions.
Our algorithms scale well with respect to the number of
points and number of centers, allowing for clustering with
tens of thousands of centers.

1 Introduction

Given a dataset and a constant k, the clustering
problem is to partition the data into k subsets such
that each subset behaves “well” under some measure.
For example, we might want to minimize the squared
Euclidean distances between points in any subset and
their center of mass. The k-means algorithm for
clustering finds a local optimum of this measure by

Permission to make digital or hard topics of all or part ofthis work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies hear this notice and the full citation on the tirst page. To copy
otherwise, to republish, to post on scrvcrs or to rcdistrihutc to lists.
requires prior specific permission andior a fee.
KDD-99 San Diego CA USA
Copyright ACM 1999 I-581 13-143-7/99/08...$5.00

keeping track of centroids of the subsets, and issuing
a large number of nearest-neighbor queries [6].

A kd-tree is a data structure for storing a finite set
of points from a finite-dimensional space [l]. Recently,
Moore has shown its usage in very fast EM-based
Mixture Model Clustering [8]. The need for such a
fast algorithm arises when conducting massive-scale
model selection, and in datasets with a large number
of attributes and records (see also [9]).

We show that kd-trees can be used to reduce the
number of nearest-neighbor queries in k-means by using
the fact that their nodes can represent a large number
of points. We are frequently able to prove for certain
nodes of the kd-tree statements of the form “any point
associated with this node must have X as its nearest
neighbor” for some center X. This, together with
a set of statistics stored in the led-nodes, allows for
great reduction in the number of arithmetic operations
needed to update the centroids of the clusters.

We have implemented our algorithms and tested
their behavior with respect to variations in the number
of points, dimensions, and centers, as measured on
synthetic data. We also present results of tests on
preliminary SDSS data.

The remainder of this paper is organized as follows.
In Section 2 we discuss related work, introduce notation
and describe the naive k-means algorithm. In Section
3 we present our algorithms with proofs of correctness.
Section 4 discusses results of experiments on real and
simulated data, and Section 5 concludes and suggests
ideas for further work.

2 Definitions and Related Work

Throughout this paper, we denote the number of
records by R, the number of dimensions by A4 and the
number of centers by k.

We first describe the naive k-means algorithm for
producing a clustering of the points in the input into
k clusters. It is the best known of all clustering
algorithms, and literally hundreds of papers about its
theory and deployment have appeared in the statistics

277

literature in the last 20 year [4, 21. The algorithm
partitions the data-points into k subsets such that all
points in a given subset “belong” to some center. The
algorithm keeps track of the centroids of the subsets,
and proceeds in iterations. We denote the set of
centroids after the i-th iteration by Cci). Before the first
iteration the centroids are initialized to random values.
The algorithm terminates when Cc”) and C(i-l) are
identical. In each iteration, the following is performed:

1. For each point x, find the center in Cci) which is
closest to 2. Associate 2 with this center.

2. Compute C(i+l) by taking, for each center, the
center of mass of points associated with this center.

Our algorithms involve modification of just the code
within one iteration. We therefore analyze the cost of
a single iteration. Naive k-means performs a “nearest-
center” query for each of the R points. During such
a query the distances in M-space to k centers are
calculated. Therefore the cost is O(kMR).

One fundamental tool we will use to tackle the
problem is the kd-tree data-structure. A thorough
discussion is out of the scope of this paper. We just
outline its relevant properties, and from this point on
will assume that a kd-tree for the input points exists.
Further details about kd-trees can be found in [7].
We will use a specialized version of kd-trees called
mrkd-trees, for “multi-resolution kd-trees” [3]. Their
properties are:

l They are binary trees.

l Each node contains information about all points
contained in a hyper-rectangle h. The hyper-
rectangle is stored at the node as two M-length
boundary vectors hmax and hmin. At the node are
also stored the number, center of mass, and sum of
Euclidean norms, of all points within h. All children
of the node represent hyper-rectangles which are
contained in h.

Each non-leaf node has a “split dimension” d and a
“split value” 21. Its children I (resp. r) represent the
hyper-rectangles hl (h,), both within h, such that
all points in hl (h,) have their d-th coordinate value
smaller than (at least) v.

The root node represents the hyper-rectangle which
encompasses all of the points.

Leaf nodes store the actual points.

For two points x, y we denote by d(x, y) their
Euclidean distance. For a point x and a hyper-rectangle
h we define closest(x, h) to be the point in h which is
closest to x. Note that computing closest(x, h) can be
done in time O(M) d ue to the following facts:

l If x E h, then z is closest.

l Otherwise, closest(x, h) is on the boundary of h.
This boundary point can be found by clipping each
coordinate of 2, to lie within h, as shown in [7].

We define the distance d(x, h) between a point x and
a hyper-rectangle h to be d(x, closest(x, h)). For a
hyper-rectangle h we denote by width(h) the vector
pax - /pin.

Given a clustering 4, we denote by 4(x) the centroid
this clustering associates with an arbitrary point x (so
for k-means, $(x) is simply the center closest to x). We
then define a measure of quality for 4:

distortion+ = i . c d2(x, d(x))
I

(1)

where R is the total number of points and x ranges
over all input points.

The k-means algorithm is known to stop at a local
minimum of the distortion measure. It is also known
to be too slow for practical databases. Much of
the related work does not attempt to confront the
algorithmic issues directly. Instead, different methods
of subsampling and approximation are proposed. A
way to obtain a small “balanced” sample of points
by sampling from the leaves of a R* tree is shown
in [5]. In WI, a simulated-annealing approach is
suggested to direct the search in the space of possible
partitions of the input points. A tree structure with
sufficient statistics is presented in [12]. It is used to
identify outliers and speed computations. However, the
calculated clusters are approximations, and depend on
many parameters.

3 Algorithms

Our algorithms exploit the fact that instead of
updating the centroids point by point, a more efficient
approach is to update in bulk. This can be done
using the known centers of mass and size of groups
of points. Naturally, these groups will correspond to
hyper-rectangles in the led-tree. To ensure correctness,
we must first make sure that all of the points in a given
rectangle indeed “belong” to a specific center before
adding their statistics to it. This gives rise to the notion
of an owner.

Definition 1 Given a set of centers C and a hyper-
rectangle h, we define by ownerc(h) a center c E C
such that any point in h is closer to c than to any other
center in C, if such a center exists.

We will omit the subscript C where it is clear from
the context. The rest of this section discusses owners
and efficient ways to find them. We start by analyzing
a property of owners, which, by listing those centers

278

.’

2

x

,’
, ,’ c1

.’
,’

;,’ LlZ

‘12 \

h .’

.’
.’

,Y’ L13
,’

\
C3

P13

Figure 1: Domination with respect to a hyper-rectangle.
Liz is the decision line between centers c1 and c2.
Similarly, Lis is the decision line between c1 and c3.
~12 is the extreme point in h in the direction c2 - cl,
and ~13 is the extreme point in h in the direction c3 -cl.
Since ~12 is on the same side of L12 as cl, c1 dominates
c2 with respect to the hyper-rectangle h. Since ~13 is
not on the same side of ,513 as cl, c1 does not dominate
c3.

which do not have it, will help us eliminate non-owners
from our set of possibilities. Note that ownerc(h) is not
always defined. For example, when two centers are both
inside a rectangle, then there exists no unique owner
for this rectangle. Therefore the precondition of the
following theorem is that there exists a unique owner.
The algorithmic consequence is that our method will
not always find an owner, and will sometimes be forced
to descend the Icd-tree, thereby splitting the hyper-
rectangle in hope to find an owner for the smaller hyper-
rectangle.

Theorem 2 Let C be a set of centers, and h a hyper-
rectangle. Let c E C be ownerc(h). Then:

d(c, h) = c& d(c’, h)

Proof: Assume, for the purpose of contradiction,
that c # argmin,tec d(c’, h) E c’. Then there exists
a point in h (namely closest(c’, h)) which is closer to
c’ than to c. A contradiction to the definition of c as
owner(h). 0

Equivalently, we can say that when looking for
owner(h), we should only consider centers with shortest
(as opposed to “minimal”) distance d(c, h). Suppose
that two (or more) centers share the minimal distance
to h. Then neither can claim to be an owner.

Theorem 2 narrows down the number of possible own-
ers to either one (if there exists a shortest distance cen-
ter) or zero (otherwise). In the latter case, our algo-
rithm will proceed by splitting the hyper-rectangle. In
the former case, we still have to check if this candidate
is an owner of the hyper-rectangle in question. As will
become clear from the following discussion, this will not
always be the case. Let us begin by defining a restricted
form of ownership, where just two centers are involved.

Definition 3 Given a hyper-rectangle h, and two cen-
ters c1 and c2 such that d(cl, h) < d(c2, h), we say that
c1 dominates c2 with respect to h if every point in h is
closer to c’ than it is to c’.

Observe that if some c E C dominates all other
centers with respect to some h, then c = owner(h). A
possible (albeit inefficient) way of finding owner(h) if
one exists would be to scan all possible pairs of centers.
However, using theorem 2, we can reduce the number
of pairs to scan since c1 is fixed. To prove this approach
feasible we need to show that the domination decision
problem can be solved efficiently.

Lemma 4 Given two centers cl, c2, and a hyper-
rectangle h such that d(c’, h) < d(c2, h), the decision
problem “does c1 dominate c2 with respect to h?” can
be answered in O(M) time.

Proof: Observe the decision line L composed of all
points which are equidistant to c1 and c2 (see Figure 1).
If c1 and h are both fully contained in one half-space
defined by L, then c1 dominates c2. The converse is also
true; if there exists a point x E h such that it is not in
the same half-space of L as cl, then d(c’,x) > d(c2,x)
and c1 does not dominate c2. It is left to show that
finding whether c1 and h are contained in the same
half-space of L can be done efficiently. Consider the
vector v’ 5 c2 - cl. Let p be a point in h which
maximizes the value of the inner product (v,p). This is
the extreme point in h in the direction v’. Note that v’
is perpendicular to L. If p is closer to c1 than it is to
c2, then so is any point in h (p is the closest one can
get to L, within h). If not, p is a proof that c1 does not
dominate c2.

Furthermore, the linear program “maximize (21, p)
such that p E h” can be solved in time O(M). Again
we notice the extreme point is a corner of h. For each
coordinate i, we choose pi to be hpax if c” > ci, and
hpin otherwise. 0 I

3.1 The Simple Algorithm

We now describe a procedure to update the centroids
in Cci). It will take into consideration an additional
parameter, a hyper-rectangle h such that all points in

279

h affect the new centroids. The procedure is recursive,
with the initial value of h being the hyper-rectangle
with all of the input points in it. If the procedure can
find owner(h), it updates its counters using the center of
mass and number of points which are stored in the Ld-
node corresponding to h (we will frequently interchange
h with the corresponding kd-node). Otherwise, it splits
h by recursively calling itself with the children of h. The
proof of correctness follows from the discussion above.

Update(h, C):

1. If h is a leaf: For each data point in h, find
the closest center to it and update that center’s
counters. Return.

2. Compute d(c, h) for all centers c. If there exists one
center c with shortest distance:

If for all other centers c’, c dominates c’ with
respect to h:

Update c’s counters using the data in h.
Return.

3. Call Update(hl , C).

4. Call UpdaFe(h, , C).

We would not expect our Update procedure to prune
in the case that h is the universal set of all input points
(since all centers are contained in it, and therefore no
shortest-distance center exists). We also notice that if
the hyper-rectangles were split again and again so that
the procedure is dealing just with leaves, this method
would be identical to the original k-means. In fact, this
implementation will be much more expensive because
of the redundant overhead. Therefore our hope is that
large enough hyper-rectangles will be owned by a single
center to make this approach worthwhile. See Figure 2
for a visualization of the procedure operation.

3.2 The “Blacklisting” Algorithm

Our next algorithm is a refinement of the simple
algorithm. The idea is to identify those centers which
will definitely not be owners of the hyper-rectangle h.
If we can show this is true for some center c, there is
no point in checking c for any of the descendants of h,
hence the term “blacklisting”. Let c1 be a minimal-
distance center to h, and let c2 be any center such that
d(c2, h) > d(cl, h). If c1 dominates c2 with respect to
h, we have two possibilities. One, that c1 = owner(h).
This is the good case since we do not need any more
computation. The other option is that we have no
owner for this node. The slow algorithm would have
given up at this point and restarted a computation
for the children of h. The blacklisting version notices
that c1 dominates c2 with respect to h’ for any h’
contained in h. This is true by definition. Now, since the

Figure 2 : Visualization of the hyper-rectangles owned
by centers. The entire two-dimensional dataset is drawn
as points in the plane. All points that “belong” to a
specific center are colored the same color (here, K=2).
The rectangles for which it was possible to prove that
belong to specific centers are also drawn. Points outside
of rectangles had to be determined in the slow method
(by scanning each center). Points within rectangles
were not considered by the algorithm. Instead, their
number and center of mass are stored together with the
rectangle and are used to update the center coordinates.

descendants of h in the kd-tree are all contained in h, we
can eliminate c2 from the Iist of possible centers at this
point for all descendants. Thus the list of prospective
owners shrinks until it reaches a size of 1. At this point
we declare the only remaining center the owner of the
current node h. Again, we hope this happens before h
is a leaf node, otherwise our overhead is wasted.

3.3 Efficiently Computing Goodness-Of-Fit
Statistics

As an added bonus, the “ownership” property can help
accelerate other computations. With the small price of
storing, in each kd-node, the sum of the squared norms
of all points of this node, one can use the exact same
algorithm to compute the distortion measure defined in
Equation 1. We omit the straightforward algebra. For
other obtainable statistics see [12].

4 Experimental Results

We have conducted experiments on both real and
randomly-generated data. The real data is preliminary
SDSS data with some 400,000 celestial objects. The
synthetic data covers a wide range of parameters that
might affect the performance of the algorithms. Some
of the measures are comparative, and measure the

280

performance of our algorithms against both the naive
algorithm and BIRCH [12]. Others simply test our fast
algorithms’ behavior on different inputs. Due to space
constraints, the details are omitted. The interested
reader may find them at [ll].

4.1 Approximate Clustering

Another way to accelerate clustering is to prune the
search when only small error is likely to be incurred.
We do this by not descending down the k&tree when
a “small-error” criterion holds for a specific node. We
then assume that the points of this node are divided
evenly among all current competitors. For each such
competing center c, we update its location as if the
relative number of points are all located at closest (c, h).
Our pruning criterion is:

n.

where n denotes the number of points in h, U is the
“universal” hyper-rectangle bounding all of the input
points, i is the iteration number, and d is a constant,
typically set to 0.8. For experimental results for this
heuristic, see [ll].

5 Conclusion

The main message of this paper is that the well-
known k-means algorithm need not be considered an
impractically slow algorithm, even with many millions
of records. We have described, analyzed and given
empirical results for a new fast implementation of k-

means. We have shown how a kd-tree of all the
datapoints, decorated with extra statistics, can be
traversed with a new, extremely cheap, pruning test
at each node. Another new technique-blacklisting-
gives a many-fold additional speed-up, both in theory
and empirically.

For datasets too large to fit in-core, the same traversal
and black-listing approaches could be applied to an on-
disk structure such as an R-tree, permitting tractable,
exact k-means even for many billions of records.

This method performs badly in high (> 8) dimen-
sions: it is not a clustering panacea, but possibly a wor-
thy problem-specific tool for domains in which there is
massively large amounts of low-dimensional data (e.g.
astrophysics, geospatial data, and controls). We are
also investigating whether AD-trees [9] could be used
to give similar speed-ups on categorical data: an ad-
vantage of AD-trees is that, subject to many caveats,
they remain efficient up to hundreds of dimensions.

Unlike previous approaches (eg., mrkd-trees for EM
[S]) this new algorithm scales very well with the number
of centers, permitting clustering with tens of thousands
of centers. Why would we care about making exact

k-means fast? Why not just use a fast non-k-means
approximate clusterer? First, exact k-means is a well-
established algorithm that has prospered for many
years as a clustering algorithm workhorse. Second, it
is often used to help find starting clusters for more
sophisticated iterative methods such as mixture models.
Third, running k-means on an in-memory sample of the
points is a popular approximate clustering algorithm
for monstrously large datasets. The techniques in
this paper can make such preprocessing steps efficient.
Finally, with fast k-means, we can afford to run the
algorithm many times in the time it would usually take
to run it once. This allows automatic selection of k, or
subsets of attributes upon which to cluster, to become
a tractable, real-time operation.

References

PI

PI

t31

[41

t51

[f31

[71

PI

PI

PO1

Pll

P21

J. L. Bentley. Multidimensional Divide and Conquer.
Communications of the ACM, 23(4):214-229, 1980.

C. M. Bishop. Neural Networks for Pattern Recogni-

tion. Clarendon Press, Oxford, 1995.

K. Deng and A. W. Moore. Multiresolution instance-
based learning, In The Proceedings of IJCAI-95, pages
1233-1242. Morgan Kaufmann, 1995.

R. 0. Duda and P. E. Hart. Pattern Classijication and
Scene Analysis. John Wiley & Sons, 1973.

M. Ester, H.-P. Kriegel, and Xiaowei Xu. A database
interface for clustering in large spatial databases.
In Proceedings of First International Conference on
Knowledge Discovery and Data Mining. AAAI; Menlo
Park, CA, USA, 1995.

A. Gersho and R. Gray. Vector quantization and signal

compression. Kluwer Academic Publishers; Dordrecht,
Netherlands, 1992.

Andrew W. Moore. Eficient Memory-based Learning

for Robot Control. PhD thesis, University of Cam-
bridge, 1991. Technical Report 209, Computer Lab-
oratory, University of Cambridge.

Andrew W. Moore. Very fast EM-based mixture model
clustering using multiresolution kd-trees. In Neural

Information Processing Systems Conference, 1998.

Andrew W. Moore and Mary Soon Lee. Cached suffi-
cient statistics for efficient machine learning with large
datasets. Journal of Artificial Inteliigence Research,

8:67-91, 1998.

Raymond T. Ng and Jiawei Han. Efficient and effective
clustering methods for spatial data mining,. In Proc.
of VLDB,, 1994.

D. Pelleg and A. Moore. Accelerating exact k-means
with geometric reasoning. Technical report, Carnegie
Mellon University, June 1999. also available from
www.cs.cmu.edu/~dpelleg/.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny.
Birch: An efficient data clustering method for very
large databases,. In to appear on Proc. of ACM

SIGMOD Conf., pages 103-114, 1995.

281

