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Abstract 

We present new algorithms for the k-means clustering 
problem. They use a new kind of Icd-tree traversal algorithm 
supplemented with a novel pruning test to give sublinear 
cost both in the number of datapoints and in the number 
of centers. The k&trees are decorated with extra “cached 
sufficient statistics” as in [3]. Sufficient statistics are 
stored in the nodes of the ,&-tree. Then, an analysis 
of the geometry of the current cluster centers results in 
great reduction of the work needed to update the centers. 
Our algorithms behave exactly as the traditional &means 
algorithm. Proofs of correctness are included. The iEd- 
tree can also be used to initialize the k-means starting 
centers efficiently. Our algorithms can be easily extended to 
provide fast ways of computing the error of a given cluster 
assignment, regardless of the method in which those clusters 
were obtained. We also show how to use them in a setting 
which allows approximate clustering results, with the benefit 
of running faster. 

We have implemented and tested our algorithms on both 
real and simulated data. Results show a speedup factor of up 
to 170 on real astrophysical data, and superiority over the 
naive algorithm on simulated data in up to 5 dimensions. 
Our algorithms scale well with respect to the number of 
points and number of centers, allowing for clustering with 
tens of thousands of centers. 

1 Introduction 

Given a dataset and a constant k, the clustering 
problem is to partition the data into k subsets such 
that each subset behaves “well” under some measure. 
For example, we might want to minimize the squared 
Euclidean distances between points in any subset and 
their center of mass. The k-means algorithm for 
clustering finds a local optimum of this measure by 
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keeping track of centroids of the subsets, and issuing 
a large number of nearest-neighbor queries [6]. 

A kd-tree is a data structure for storing a finite set 
of points from a finite-dimensional space [l]. Recently, 
Moore has shown its usage in very fast EM-based 
Mixture Model Clustering [8]. The need for such a 
fast algorithm arises when conducting massive-scale 
model selection, and in datasets with a large number 
of attributes and records (see also [9]). 

We show that kd-trees can be used to reduce the 
number of nearest-neighbor queries in k-means by using 
the fact that their nodes can represent a large number 
of points. We are frequently able to prove for certain 
nodes of the kd-tree statements of the form “any point 
associated with this node must have X as its nearest 
neighbor” for some center X. This, together with 
a set of statistics stored in the led-nodes, allows for 
great reduction in the number of arithmetic operations 
needed to update the centroids of the clusters. 

We have implemented our algorithms and tested 
their behavior with respect to variations in the number 
of points, dimensions, and centers, as measured on 
synthetic data. We also present results of tests on 
preliminary SDSS data. 

The remainder of this paper is organized as follows. 
In Section 2 we discuss related work, introduce notation 
and describe the naive k-means algorithm. In Section 
3 we present our algorithms with proofs of correctness. 
Section 4 discusses results of experiments on real and 
simulated data, and Section 5 concludes and suggests 
ideas for further work. 

2 Definitions and Related Work 

Throughout this paper, we denote the number of 
records by R, the number of dimensions by A4 and the 
number of centers by k. 

We first describe the naive k-means algorithm for 
producing a clustering of the points in the input into 
k clusters. It is the best known of all clustering 
algorithms, and literally hundreds of papers about its 
theory and deployment have appeared in the statistics 
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literature in the last 20 year [4, 21. The algorithm 
partitions the data-points into k subsets such that all 
points in a given subset “belong” to some center. The 
algorithm keeps track of the centroids of the subsets, 
and proceeds in iterations. We denote the set of 
centroids after the i-th iteration by Cci). Before the first 
iteration the centroids are initialized to random values. 
The algorithm terminates when Cc”) and C(i-l) are 
identical. In each iteration, the following is performed: 

1. For each point x, find the center in Cci) which is 
closest to 2. Associate 2 with this center. 

2. Compute C(i+l) by taking, for each center, the 
center of mass of points associated with this center. 

Our algorithms involve modification of just the code 
within one iteration. We therefore analyze the cost of 
a single iteration. Naive k-means performs a “nearest- 
center” query for each of the R points. During such 
a query the distances in M-space to k centers are 
calculated. Therefore the cost is O(kMR). 

One fundamental tool we will use to tackle the 
problem is the kd-tree data-structure. A thorough 
discussion is out of the scope of this paper. We just 
outline its relevant properties, and from this point on 
will assume that a kd-tree for the input points exists. 
Further details about kd-trees can be found in [7]. 
We will use a specialized version of kd-trees called 
mrkd-trees, for “multi-resolution kd-trees” [3]. Their 
properties are: 

l They are binary trees. 

l Each node contains information about all points 
contained in a hyper-rectangle h. The hyper- 
rectangle is stored at the node as two M-length 
boundary vectors hmax and hmin. At the node are 
also stored the number, center of mass, and sum of 
Euclidean norms, of all points within h. All children 
of the node represent hyper-rectangles which are 
contained in h. 

Each non-leaf node has a “split dimension” d and a 
“split value” 21. Its children I (resp. r) represent the 
hyper-rectangles hl (h,), both within h, such that 
all points in hl (h,) have their d-th coordinate value 
smaller than (at least) v. 

The root node represents the hyper-rectangle which 
encompasses all of the points. 

Leaf nodes store the actual points. 

For two points x, y we denote by d(x, y) their 
Euclidean distance. For a point x and a hyper-rectangle 
h we define closest(x, h) to be the point in h which is 
closest to x. Note that computing closest(x, h) can be 
done in time O(M) d ue to the following facts: 

l If x E h, then z is closest. 

l Otherwise, closest(x, h) is on the boundary of h. 
This boundary point can be found by clipping each 
coordinate of 2, to lie within h, as shown in [7]. 

We define the distance d(x, h) between a point x and 
a hyper-rectangle h to be d(x, closest(x, h)). For a 
hyper-rectangle h we denote by width(h) the vector 
pax - /pin. 

Given a clustering 4, we denote by 4(x) the centroid 
this clustering associates with an arbitrary point x (so 
for k-means, $(x) is simply the center closest to x). We 
then define a measure of quality for 4: 

distortion+ = i . c d2(x, d(x)) 
I 

(1) 

where R is the total number of points and x ranges 
over all input points. 

The k-means algorithm is known to stop at a local 
minimum of the distortion measure. It is also known 
to be too slow for practical databases. Much of 
the related work does not attempt to confront the 
algorithmic issues directly. Instead, different methods 
of subsampling and approximation are proposed. A 
way to obtain a small “balanced” sample of points 
by sampling from the leaves of a R* tree is shown 
in [5]. In WI, a simulated-annealing approach is 
suggested to direct the search in the space of possible 
partitions of the input points. A tree structure with 
sufficient statistics is presented in [12]. It is used to 
identify outliers and speed computations. However, the 
calculated clusters are approximations, and depend on 
many parameters. 

3 Algorithms 

Our algorithms exploit the fact that instead of 
updating the centroids point by point, a more efficient 
approach is to update in bulk. This can be done 
using the known centers of mass and size of groups 
of points. Naturally, these groups will correspond to 
hyper-rectangles in the led-tree. To ensure correctness, 
we must first make sure that all of the points in a given 
rectangle indeed “belong” to a specific center before 
adding their statistics to it. This gives rise to the notion 
of an owner. 

Definition 1 Given a set of centers C and a hyper- 
rectangle h, we define by ownerc(h) a center c E C 
such that any point in h is closer to c than to any other 
center in C, if such a center exists. 

We will omit the subscript C where it is clear from 
the context. The rest of this section discusses owners 
and efficient ways to find them. We start by analyzing 
a property of owners, which, by listing those centers 
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Figure 1: Domination with respect to a hyper-rectangle. 
Liz is the decision line between centers c1 and c2. 
Similarly, Lis is the decision line between c1 and c3. 
~12 is the extreme point in h in the direction c2 - cl, 
and ~13 is the extreme point in h in the direction c3 -cl. 
Since ~12 is on the same side of L12 as cl, c1 dominates 
c2 with respect to the hyper-rectangle h. Since ~13 is 
not on the same side of ,513 as cl, c1 does not dominate 
c3. 

which do not have it, will help us eliminate non-owners 
from our set of possibilities. Note that ownerc(h) is not 
always defined. For example, when two centers are both 
inside a rectangle, then there exists no unique owner 
for this rectangle. Therefore the precondition of the 
following theorem is that there exists a unique owner. 
The algorithmic consequence is that our method will 
not always find an owner, and will sometimes be forced 
to descend the Icd-tree, thereby splitting the hyper- 
rectangle in hope to find an owner for the smaller hyper- 
rectangle. 

Theorem 2 Let C be a set of centers, and h a hyper- 
rectangle. Let c E C be ownerc(h). Then: 

d(c, h) = c& d(c’, h) 

Proof: Assume, for the purpose of contradiction, 
that c # argmin,tec d(c’, h) E c’. Then there exists 
a point in h (namely closest(c’, h)) which is closer to 
c’ than to c. A contradiction to the definition of c as 
owner(h). 0 

Equivalently, we can say that when looking for 
owner(h), we should only consider centers with shortest 
(as opposed to “minimal”) distance d(c, h). Suppose 
that two (or more) centers share the minimal distance 
to h. Then neither can claim to be an owner. 

Theorem 2 narrows down the number of possible own- 
ers to either one (if there exists a shortest distance cen- 
ter) or zero (otherwise). In the latter case, our algo- 
rithm will proceed by splitting the hyper-rectangle. In 
the former case, we still have to check if this candidate 
is an owner of the hyper-rectangle in question. As will 
become clear from the following discussion, this will not 
always be the case. Let us begin by defining a restricted 
form of ownership, where just two centers are involved. 

Definition 3 Given a hyper-rectangle h, and two cen- 
ters c1 and c2 such that d(cl, h) < d(c2, h), we say that 
c1 dominates c2 with respect to h if every point in h is 
closer to c’ than it is to c’. 

Observe that if some c E C dominates all other 
centers with respect to some h, then c = owner(h). A 
possible (albeit inefficient) way of finding owner(h) if 
one exists would be to scan all possible pairs of centers. 
However, using theorem 2, we can reduce the number 
of pairs to scan since c1 is fixed. To prove this approach 
feasible we need to show that the domination decision 
problem can be solved efficiently. 

Lemma 4 Given two centers cl, c2, and a hyper- 
rectangle h such that d(c’, h) < d(c2, h), the decision 
problem “does c1 dominate c2 with respect to h?” can 
be answered in O(M) time. 

Proof: Observe the decision line L composed of all 
points which are equidistant to c1 and c2 (see Figure 1). 
If c1 and h are both fully contained in one half-space 
defined by L, then c1 dominates c2. The converse is also 
true; if there exists a point x E h such that it is not in 
the same half-space of L as cl, then d(c’,x) > d(c2,x) 
and c1 does not dominate c2. It is left to show that 
finding whether c1 and h are contained in the same 
half-space of L can be done efficiently. Consider the 
vector v’ 5 c2 - cl. Let p be a point in h which 
maximizes the value of the inner product (v,p). This is 
the extreme point in h in the direction v’. Note that v’ 
is perpendicular to L. If p is closer to c1 than it is to 
c2, then so is any point in h (p is the closest one can 
get to L, within h). If not, p is a proof that c1 does not 
dominate c2. 

Furthermore, the linear program “maximize (21, p) 
such that p E h” can be solved in time O(M). Again 
we notice the extreme point is a corner of h. For each 
coordinate i, we choose pi to be hpax if c” > ci, and 
hpin otherwise. 0 I 

3.1 The Simple Algorithm 

We now describe a procedure to update the centroids 
in Cci). It will take into consideration an additional 
parameter, a hyper-rectangle h such that all points in 
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h affect the new centroids. The procedure is recursive, 
with the initial value of h being the hyper-rectangle 
with all of the input points in it. If the procedure can 
find owner(h), it updates its counters using the center of 
mass and number of points which are stored in the Ld- 
node corresponding to h (we will frequently interchange 
h with the corresponding kd-node). Otherwise, it splits 
h by recursively calling itself with the children of h. The 
proof of correctness follows from the discussion above. 

Update(h, C): 

1. If h is a leaf: For each data point in h, find 
the closest center to it and update that center’s 
counters. Return. 

2. Compute d(c, h) for all centers c. If there exists one 
center c with shortest distance: 

If for all other centers c’, c dominates c’ with 
respect to h: 

Update c’s counters using the data in h. 
Return. 

3. Call Update( hl , C). 

4. Call UpdaFe( h, , C). 

We would not expect our Update procedure to prune 
in the case that h is the universal set of all input points 
(since all centers are contained in it, and therefore no 
shortest-distance center exists). We also notice that if 
the hyper-rectangles were split again and again so that 
the procedure is dealing just with leaves, this method 
would be identical to the original k-means. In fact, this 
implementation will be much more expensive because 
of the redundant overhead. Therefore our hope is that 
large enough hyper-rectangles will be owned by a single 
center to make this approach worthwhile. See Figure 2 
for a visualization of the procedure operation. 

3.2 The “Blacklisting” Algorithm 

Our next algorithm is a refinement of the simple 
algorithm. The idea is to identify those centers which 
will definitely not be owners of the hyper-rectangle h. 
If we can show this is true for some center c, there is 
no point in checking c for any of the descendants of h, 
hence the term “blacklisting”. Let c1 be a minimal- 
distance center to h, and let c2 be any center such that 
d(c2, h) > d(cl, h). If c1 dominates c2 with respect to 
h, we have two possibilities. One, that c1 = owner(h). 
This is the good case since we do not need any more 
computation. The other option is that we have no 
owner for this node. The slow algorithm would have 
given up at this point and restarted a computation 
for the children of h. The blacklisting version notices 
that c1 dominates c2 with respect to h’ for any h’ 
contained in h. This is true by definition. Now, since the 

Figure 2 : Visualization of the hyper-rectangles owned 
by centers. The entire two-dimensional dataset is drawn 
as points in the plane. All points that “belong” to a 
specific center are colored the same color (here, K=2). 
The rectangles for which it was possible to prove that 
belong to specific centers are also drawn. Points outside 
of rectangles had to be determined in the slow method 
(by scanning each center). Points within rectangles 
were not considered by the algorithm. Instead, their 
number and center of mass are stored together with the 
rectangle and are used to update the center coordinates. 

descendants of h in the kd-tree are all contained in h, we 
can eliminate c2 from the Iist of possible centers at this 
point for all descendants. Thus the list of prospective 
owners shrinks until it reaches a size of 1. At this point 
we declare the only remaining center the owner of the 
current node h. Again, we hope this happens before h 
is a leaf node, otherwise our overhead is wasted. 

3.3 Efficiently Computing Goodness-Of-Fit 
Statistics 

As an added bonus, the “ownership” property can help 
accelerate other computations. With the small price of 
storing, in each kd-node, the sum of the squared norms 
of all points of this node, one can use the exact same 
algorithm to compute the distortion measure defined in 
Equation 1. We omit the straightforward algebra. For 
other obtainable statistics see [12]. 

4 Experimental Results 

We have conducted experiments on both real and 
randomly-generated data. The real data is preliminary 
SDSS data with some 400,000 celestial objects. The 
synthetic data covers a wide range of parameters that 
might affect the performance of the algorithms. Some 
of the measures are comparative, and measure the 
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performance of our algorithms against both the naive 
algorithm and BIRCH [12]. Others simply test our fast 
algorithms’ behavior on different inputs. Due to space 
constraints, the details are omitted. The interested 
reader may find them at [ll]. 

4.1 Approximate Clustering 

Another way to accelerate clustering is to prune the 
search when only small error is likely to be incurred. 
We do this by not descending down the k&tree when 
a “small-error” criterion holds for a specific node. We 
then assume that the points of this node are divided 
evenly among all current competitors. For each such 
competing center c, we update its location as if the 
relative number of points are all located at closest (c, h). 
Our pruning criterion is: 

n. 

where n denotes the number of points in h, U is the 
“universal” hyper-rectangle bounding all of the input 
points, i is the iteration number, and d is a constant, 
typically set to 0.8. For experimental results for this 
heuristic, see [ll]. 

5 Conclusion 

The main message of this paper is that the well- 
known k-means algorithm need not be considered an 
impractically slow algorithm, even with many millions 
of records. We have described, analyzed and given 
empirical results for a new fast implementation of k- 

means. We have shown how a kd-tree of all the 
datapoints, decorated with extra statistics, can be 
traversed with a new, extremely cheap, pruning test 
at each node. Another new technique-blacklisting- 
gives a many-fold additional speed-up, both in theory 
and empirically. 

For datasets too large to fit in-core, the same traversal 
and black-listing approaches could be applied to an on- 
disk structure such as an R-tree, permitting tractable, 
exact k-means even for many billions of records. 

This method performs badly in high (> 8) dimen- 
sions: it is not a clustering panacea, but possibly a wor- 
thy problem-specific tool for domains in which there is 
massively large amounts of low-dimensional data (e.g. 
astrophysics, geospatial data, and controls). We are 
also investigating whether AD-trees [9] could be used 
to give similar speed-ups on categorical data: an ad- 
vantage of AD-trees is that, subject to many caveats, 
they remain efficient up to hundreds of dimensions. 

Unlike previous approaches (eg., mrkd-trees for EM 
[S]) this new algorithm scales very well with the number 
of centers, permitting clustering with tens of thousands 
of centers. Why would we care about making exact 

k-means fast? Why not just use a fast non-k-means 
approximate clusterer? First, exact k-means is a well- 
established algorithm that has prospered for many 
years as a clustering algorithm workhorse. Second, it 
is often used to help find starting clusters for more 
sophisticated iterative methods such as mixture models. 
Third, running k-means on an in-memory sample of the 
points is a popular approximate clustering algorithm 
for monstrously large datasets. The techniques in 
this paper can make such preprocessing steps efficient. 
Finally, with fast k-means, we can afford to run the 
algorithm many times in the time it would usually take 
to run it once. This allows automatic selection of k, or 
subsets of attributes upon which to cluster, to become 
a tractable, real-time operation. 
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