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1 Review

Earlier we have seen some of the spectral properties of a graph.To review for a d-regular
graph G=(V,E) with adjacency matrix A,we defined a normalised adjacency matrix

M=A
d
. We also defined a notion of expansion of a cut (S,

−
S) as h(S)= E(S,

−
S)

min|S|,|
−
S|

.We de-

noted the eigen values of M by λ1, λ2, ..., λn. It was then shown that:-

1. 1 = λ1 ≥ λ2 ≥ ...λn ≥ −1

2. λ2 = 1 iff G is disconnected

3. λn = −1 iff G is bipartite

We also proved a softer version of statement 2 as cheeger’s inequality i.e.
Cheeger’s Inequality:
1−λ2
2
≤ h(G) ≤

√
2(1− λ2)

Note:The same results also hold for a weighted graph which is not d regular.In that case
we define define a matrix of degrees D,with Dii=degree of vertex i=

∑
j w(i, j) and Dij =

0∀i 6= j.Then M is given by L=D−1/2AD−1/2.It may be noted that M = A
d

for a d-regular
graph.The above results however hold in general for the generalised definition of M.In

this case we define the expansion as w(S,
−
S)

vol(S)
, where vol(S) =

∑
u∈S

∑
vinV w(u, v).h(G) =

min
S:vol(S)≤ vol(S)

2

h(S) In today’s discussion we will generalise this setting in several ways:-

1. We will consider a generalised definition of a partition into several components
which may be larger than 2.We will have to generalise the notion of expansion
factor for the same.

2. Secondly we will also generalise the definition to ensure that the number of edges
to break 2 different components of parttition is small,but the same to break a single
component of partition is large

To remain consistent with paper we define a notion of a laplacian matrix.

Definition 1 LaplacianFor an undirected weighted graph G=(V,E), with weights a
weight function w : V XV → R+ (w(u,v)=0 if (u,v) is not an edge), define a matrix
of degrees D,with Dii=degree of vertex i=

∑
j w(i, j) and Dij = 0∀i 6= j.Then laplacian of

G is given by L=I −D−1/2AD−1/2..e. L=I-M.
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The eigen values of L and M have a simple relation that is:-

Lemma 1 v is an eigen vector of M associated with eigen value λ iff v is an eigen vector
of L associated with eigen value 1− λ

Proof. =⇒
Mv = λv =⇒ (I −M)v = v − λv =⇒ Lv = (1− λ)v
⇐=
Lv = (1− λ)v =⇒ (I −M)v = v − λv =⇒ Mv = λv

Denote λ′i as the ith smallest eigen value of L. The previous result can now be stated in
terms of L as:-

1. 0 = λ′1 ≤ λ′2 ≤ ...λ′n ≤ 2

2. λ′2 = 0 iff G is disconnected

3. λ′n = 2 iff G is bipartite

Cheeger’s Inequality:
λ′2
2
≤ h(G) ≤

√
2(λ′2)

2 Generalising the result to large number of parti-

tions

The previous result can be generalised to the case of more than 2 disconnected compo-
nents as well.

Theorem 2 If L is the laplacian of a graph G, then multiplicity of 0 as an eigen value
of L=Number of maximally discnnected components of G.

Proof. Let the number of disconnected components of G be k.Order the vertices so that
vertices in same maximally connected component are numbered consecutively.
Let A be the adjacency matrix in this numbering.(Note that the above operation is
allowed, since permuting the rows and columns of a matrix ensures that the matrices
remain similar.In this case,the eigen values of the matrix do not change.)
By choice of ordering the matrix can now be partitioned into k blocks along the diagonal
each corresponding to a maximally connected component of G.Say A=

A1 0 0..
0 A2 0..
0 0 ..
0 0 ..Ak
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Now f(x)=characteristic polynomial of A
=det(xI-A)=det(xI − A1)det(xI − A2)...det(xI − Ak).
(By determinant of block decomposition) But det(xI −Ai)=characteristic polynomial of
ith maximally connected subgraph=fi(x)(let).
Now f(x) = Πk

i=1fi(x).
Now since each Ai is connected, the degree of x in fi(x)=algebraic multiplicity of eigen
value 0 in fi(x)=1
Thus algebraic multiplicity of 0 in f(x) is k(xk|f(x) and xk+1 does not divide f(x)).
Thus geometric multiplicity of 0 as an eigen value of f(x)=algebraic multiplicity of 0 as
an eigen value of f(x)=k.

Corollary 1 For a graph G=(V,E) with eigen values of laplacian(in non decreasing
order) as λ′i,λ

′
k = 0 iff G has at least k disconnected components.

Proof. λ′k=0 iff multiplicity of 0 as an eigen value ≥k.(Follows from the fact that λ′i
form a non decreasing sequence and λ′1 = 0). But multiplicity of 0 as an eigen value
=Number of maximally connected components.(Proved above).Thus λ′k=0 iff G has at
least k disconnected components.

To state a generalised version of Cheeger’s inequality, we need to generalise the definition
of expansion factor.

Definition 2 ρ(k)Define ρ(k) = min A1,...,Ak, Ai 6=φ, Ai∩Aj 6=φ,i 6=jmaxh(Ai).

Note that Ai are only required to be disjoint and need not form a partition of V.Moreover
though Ai can not be empty sets, the definition does not explicitly state Ai 6= V .This
will implied when k ≥ 2, but the ρ is well defined to k=1 as well.
Observations

1. ρ(1) = 0.Choose A1=V.Now h(V)=0.

2. ρ(2) = h(G).Though it appears intuitive ,the subtlety is that the definition of ρ
does not restrict A1, A2 to be a partitioning,only the condition that they are disjoint
suffices.
Proof.

• ρ(2) ≤ h(G)

Let S ⊂ V that realises h(G) with vol(S) ≤ vol(V )
2

.Clearly h(
−
S) ≤ h(S)(Since

volume is larger but weights of edges going across is same).Thusmax(h(S), h(
−
S)) =

h(S).Since ρ(2) = minA1,A2,disjoint and non empty max(h(A1), h(A2))

≤ max(max(h(S), h(
−
S))) = h(G).
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• h(G) ≤ ρ(2)
Let A1 and A2 be the disjoint sets that realise ρ(2).Now vol(A1) + vol(A2) ≤
vol(V ).Thus one of these must have volume ≤ vol(V )

2
.

WLOG assume vol(A1) ≤ vol(V )
2

.
Now ρ(2) = max(h(A1), h(A2)) ≥ h(A1) ≥ h(G).

Thus ρ(2) = h(G)

3. 0 = ρ(1) ≤ ρ(2) ≤ ρ(3)... ≤ ρ(n)

It turns that cheeger’s inequality can be generalised in terms of ρ for any arbitrary k.

Theorem 3 (LOT12) For any graph G,with λ′i being the ith smallest eigen value of its
laplacian, and for an arbitrary k ≥ 2, we have the following:-
λ′k
2
≤ ρ(k) ≤ O(k2)

√
λ′k.

3 Partitioning into expanders:Main Result

Ideally we would like to partition a graph into subsets of vertices such that it is easy to
disconnect any 2 distinct subsets, but not so easy to disconnect any 1 subset.In order to
mathematically define such a partitioning , we define a notion of (hin, hout) clustering.

Definition 3 We say k disjoint subsets A1, ...Ak of V are a (hin, hout) clustering if for
all 1 ≤ i ≤ k, h(G[Ai]) ≥ hin and h(Ai) ≤ hout

Here h(G[Ai]) refers to the expansion factor of the subgraph induced on Ai(considering
all valid cuts in this subgraph). On the other hand h(Ai) considers a single cut Ai as
a part of the original graph. The definition captures the requirement that it should be
difficult to disconnect a valid subset, but easy 2 disconnect 2 distinct components.

Theorem 4 If for a graph G, ρ(k + 1) > (1 + ε)ρ(k),for some 0 < ε < 1,then

1. There exists k disjoint subsets of V that form a (ερ(k + 1)/7, ρ(k)) clustering.

2. There exists a k partitioning of V that is a (ερ(k + 1)/(14k), kρ(k))

Note that the parts 1 and 2 of above theorem differ in the fact that a partitioning requires
subsets whose union is V apart from being disjoint.

Corollary 2 For any k ≥ 2 , if λk > 0 then for some 1 ≤ l ≤ k − 1, there is an l

partitioning of V into sets P1, ...Pl that is a =(Ω(ρ(k)
k2

), O(lρ(l))) = ((Ω(
λ′k
k2

), O(l3
√
λl)))

clustering.
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Proof. To prove the statement, we need to choose a value of l and ε carefully enough
and apply the above theorem.

Since ρ(k) ≥ λ′k
2
> 0 and ρ(1) = 0,∃l < k such that ρ(l)(1+ 1

k
)(Choosing l equal to largest

index i such that ρ(i)=0 suffices).
Now choose largest such l<k satisfying ρ(l)(1 + 1

k
).

Telescoping we obtain that ρ(k) ≤ (1 + 1
k
)k−l−1ρ(l + 1) ≤ e.ρ(l + 1).Now applying the

second part theorem on l,∃ a partitioning into sets P1, P2, ...Pl such that ∀1 ≤ i ≤ l,
h(G[Pi]) ≥ ρ(l+1)

14kl
≥ ρ(k)

14k2e
≥ λk

28k2e
= λk

80k2
and h(Pi) ≤ lρ(l) ≤ O(l3)

√
λl

3.1 Proof idea for main Theorem

The first part of main theorem guarantees existence of a k disjoint sets each having
h(Pi) ≤ O(ρ(k)) and having an internal expansion ≥ Ωρ(k + 1).
A ”wrong” way to prove the result would be to argue that there exists k disjoint sets,
say P1, ...Pl with h(Ai) ≤ ρ(k).
Now if we split any of these further we have a k+1 disjoint subsets and hence hin ≥
ρ(k + 1).
The fallacy is that on partitioning one of the sets say Pi into say B1 and B1 some of the
edges from B1 go outside Pi as well.
The proof could have ”worked” if we could ensure that for any Pi,any proper subset of Pi
,say B, out of all edges which go outside B, a large fraction of them go into edges within
Pi.
To state this formally we need a definition.

Definition 4 For any set P ⊆ V and S ⊂ P ,define ψ(S, P ) = w(S,P/S)

w(S,V/P ).
vol(P−S)
vol(P )

The proof of part 1 works in 2 steps as follows:-

1. First it is shown that for a graph satisfying conditions of theorem and disjoint sets
A1, ...Ak,satisfying h(Ai) ≤ ρ(k) we can construct k sets B1, ..., Bk where Bi ⊆ Ai,
h(Bi) ≤ h(Ai) and ψ(S,Bi) ≥ ε

3
for every S ⊂ Bi.

This can be proved by starting from sets Bi = Ai(initial assignment) and arbitrarily
picking setsBi,S which violate the condition, and setting Bi=S or Bi/S whichever
has lesser expansion.
It can be proved that at each stage h(Bi) decreases.
Moreover ψ(S,Bi) ≥ ε

3
for every S ⊂ Bi is ensured as a terminating condition.

2. Further it can be shown that if Bi satisfy the condition stated in above step, then
h(G[Bi]) ≥ ερ(k+1)

7

The proof of second part works by first finding disjoint sets satisfying the first part of
the theorem.Using the same we can extend it to a valid partitioning.
Initialise each Pi = Bi for i ≤ k− 1 and Pk = V −B1−B2− ...Bk(where Bi’s are disjoint
subsets from first part).
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Now we ensure that a large fraction of edges from Pi −Bi enter Pi.
Formally we need w(S, Pi/S) ≤ w(S,V/S)

k
for every S ⊆ Pi −Bi.

4 Conclusion

The paper also gives an algorithmic result for the same which is slightly weaker.
The paper has thus shown an existential result for a good (hin, hout) clustering for a
constant gap between ρ(k) and ρ(k+1). It is suggested as an open problem if the analysis
can be extended to the case when there is a constant gap between λ′k and λ′k+1.Currently
this requires a larger gap.
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