COL872:Expander Graphs

May 1, 2015

Partitioning Into Expanders:Gharan and Trevisan

Dhiraj Madan Entry No.: 2011CS50545

1 Review

Earlier we have seen some of the spectral properties of a graph. To review for a d-regular graph G=(V,E) with adjacency matrix A,we defined a normalised adjacency matrix $M=\frac{A}{d}$. We also defined a notion of expansion of a cut (S,\bar{S}) as $h(S)=\frac{E(S,\bar{S})}{\min|S|,|\bar{S}|}$. We denoted the eigen values of M by $\lambda_1,\lambda_2,...,\lambda_n$. It was then shown that:-

- 1. $1 = \lambda_1 \ge \lambda_2 \ge ... \lambda_n \ge -1$
- 2. $\lambda_2 = 1$ iff G is disconnected
- 3. $\lambda_n = -1$ iff G is bipartite

We also proved a softer version of statement 2 as cheeger's inequality i.e.

Cheeger's Inequality:

$$\frac{1-\lambda_2}{2} \le h(G) \le \sqrt{2(1-\lambda_2)}$$

Note: The same results also hold for a weighted graph which is not d regular. In that case we define define a matrix of degrees D, with D_{ii} =degree of vertex $\mathbf{i} = \sum_j w(i,j)$ and $D_{ij} = 0 \forall i \neq j$. Then M is given by $\mathbf{L} = D^{-1/2}AD^{-1/2}$. It may be noted that $M = \frac{A}{d}$ for a d-regular graph. The above results however hold in general for the generalised definition of M.In this case we define the expansion as $\frac{w(S,\bar{S})}{vol(S)}$, where $vol(S) = \sum_{u \in S} \sum_{vinV} w(u,v).h(G) = \min_{S:vol(S) \leq \frac{vol(S)}{2}} h(S)$ In today's discussion we will generalise this setting in several ways:-

- 1. We will consider a generalised definition of a partition into several components which may be larger than 2. We will have to generalise the notion of expansion factor for the same.
- 2. Secondly we will also generalise the definition to ensure that the number of edges to break 2 different components of partition is small, but the same to break a single component of partition is large

To remain consistent with paper we define a notion of a laplacian matrix.

Definition 1 LaplacianFor an undirected weighted graph G=(V,E), with weights a weight function $w: VXV \to \mathbb{R}^+$ (w(u,v)=0 if (u,v) is not an edge), define a matrix of degrees <math>D, with $D_{ii}=$ degree of vertex $i=\sum_j w(i,j)$ and $D_{ij}=0 \forall i \neq j$. Then laplacian of G is given by $L=I-D^{-1/2}AD^{-1/2}$..e. L=I-M.

The eigen values of L and M have a simple relation that is:-

Lemma 1 v is an eigen vector of M associated with eigen value λ iff v is an eigen vector of L associated with eigen value $1 - \lambda$

Proof.
$$\Longrightarrow$$
 $Mv = \lambda v \implies (I - M)v = v - \lambda v \implies Lv = (1 - \lambda)v \iff$ $Lv = (1 - \lambda)v \implies (I - M)v = v - \lambda v \implies Mv = \lambda v$

Denote λ'_i as the i^{th} smallest eigen value of L. The previous result can now be stated in terms of L as:-

- 1. $0 = \lambda_1' \le \lambda_2' \le ... \lambda_n' \le 2$
- 2. $\lambda_2' = 0$ iff G is disconnected
- 3. $\lambda'_n = 2$ iff G is bipartite

Cheeger's Inequality: $\frac{\lambda_2'}{2} \le h(G) \le \sqrt{2(\lambda_2')}$

2 Generalising the result to large number of partitions

The previous result can be generalised to the case of more than 2 disconnected components as well.

Theorem 2 If L is the laplacian of a graph G, then multiplicity of 0 as an eigen value of L=Number of maximally disconnected components of G.

Proof. Let the number of disconnected components of G be k.Order the vertices so that vertices in same maximally connected component are numbered consecutively.

Let A be the adjacency matrix in this numbering. (Note that the above operation is allowed, since permuting the rows and columns of a matrix ensures that the matrices remain similar. In this case, the eigen values of the matrix do not change.)

By choice of ordering the matrix can now be partitioned into k blocks along the diagonal each corresponding to a maximally connected component of G.Say A=

$$\left(\begin{array}{cccc}
A_1 & 0 & 0.. \\
0 & A_2 & 0.. \\
0 & 0 & .. \\
0 & 0 & .. A_k
\end{array}\right)$$

Now f(x)=characteristic polynomial of A

$$=\det(xI-A)=\det(xI-A_1)\det(xI-A_2)...\det(xI-A_k).$$

(By determinant of block decomposition) But $det(xI - A_i)$ =characteristic polynomial of i^{th} maximally connected subgraph= $f_i(x)$ (let).

Now
$$f(x) = \prod_{i=1}^k f_i(x)$$
.

Now since each A_i is connected, the degree of x in $f_i(x)$ =algebraic multiplicity of eigenvalue 0 in $f_i(x)$ =1

Thus algebraic multiplicity of 0 in f(x) is $k(x^k|f(x))$ and x^{k+1} does not divide f(x).

Thus geometric multiplicity of 0 as an eigen value of f(x)=algebraic multiplicity of 0 as an eigen value of f(x)=k.

Corollary 1 For a graph G=(V,E) with eigen values of laplacian(in non decreasing order) as $\lambda'_i, \lambda'_k = 0$ iff G has at least k disconnected components.

Proof. $\lambda'_k=0$ iff multiplicity of 0 as an eigen value $\geq k$.(Follows from the fact that λ'_i form a non decreasing sequence and $\lambda'_1=0$). But multiplicity of 0 as an eigen value =Number of maximally connected components.(Proved above). Thus $\lambda'_k=0$ iff G has at least k disconnected components.

To state a generalised version of Cheeger's inequality, we need to generalise the definition of expansion factor.

Definition 2
$$\rho(k)$$
 Define $\rho(k) = min_{A_1,...,A_k, A_i \neq \phi, A_i \cap A_j \neq \phi, i \neq j} maxh(A_i)$.

Note that A_i are only required to be disjoint and need not form a partition of V.Moreover though A_i can not be empty sets, the definition does not explicitly state $A_i \neq V$. This will implied when $k \geq 2$, but the ρ is well defined to k=1 as well.

Observations

- 1. $\rho(1) = 0$.Choose $A_1 = V$.Now h(V) = 0.
- 2. $\rho(2) = h(G)$. Though it appears intuitive ,the subtlety is that the definition of ρ does not restrict A_1, A_2 to be a partitioning, only the condition that they are disjoint suffices.

Proof.

• $\rho(2) \leq h(G)$ Let $S \subset V$ that realises h(G) with $vol(S) \leq \frac{vol(V)}{2}$. Clearly $h(S) \leq h(S)$ (Since volume is larger but weights of edges going across is same). Thus max(h(S), h(S)) = h(S). Since $\rho(2) = \min_{A_1, A_2, disjoint \ and \ non \ empty} max(h(A_1), h(A_2))$ $\leq max(max(h(S), h(S))) = h(G)$. • $h(G) \leq \rho(2)$

Let A_1 and A_2 be the disjoint sets that realise $\rho(2)$. Now $vol(A_1) + vol(A_2) \leq 1$ vol(V). Thus one of these must have volume $\leq \frac{vol(V)}{2}$.

WLOG assume $vol(A_1) \leq \frac{vol(V)}{2}$. Now $\rho(2) = max(h(A_1), h(A_2)) \geq h(A_1) \geq h(G)$.

Thus
$$\rho(2) = h(G)$$

3.
$$0 = \rho(1) \le \rho(2) \le \rho(3) \dots \le \rho(n)$$

It turns that cheeger's inequality can be generalised in terms of ρ for any arbitrary k.

Theorem 3 (LOT12) For any graph G, with λ'_i being the i^{th} smallest eigen value of its laplacian, and for an arbitrary $k \geq 2$, we have the following:- $\frac{\lambda'_k}{2} \leq \rho(k) \leq O(k^2) \sqrt{\lambda'_k}.$

Partitioning into expanders: Main Result 3

Ideally we would like to partition a graph into subsets of vertices such that it is easy to disconnect any 2 distinct subsets, but not so easy to disconnect any 1 subset. In order to mathematically define such a partitioning, we define a notion of (h_{in}, h_{out}) clustering.

Definition 3 We say k disjoint subsets $A_1, ... A_k$ of V are a (h_{in}, h_{out}) clustering if for all $1 \le i \le k$, $h(G[A_i]) \ge h_{in}$ and $h(A_i) \le h_{out}$

Here $h(G[A_i])$ refers to the expansion factor of the subgraph induced on A_i (considering all valid cuts in this subgraph). On the other hand $h(A_i)$ considers a single cut A_i as a part of the original graph. The definition captures the requirement that it should be difficult to disconnect a valid subset, but easy 2 disconnect 2 distinct components.

Theorem 4 If for a graph G, $\rho(k+1) > (1+\epsilon)\rho(k)$, for some $0 < \epsilon < 1$, then

- 1. There exists k disjoint subsets of V that form a $(\epsilon \rho(k+1)/7, \rho(k))$ clustering.
- 2. There exists a k partitioning of V that is a $(\epsilon \rho(k+1)/(14k), k\rho(k))$

Note that the parts 1 and 2 of above theorem differ in the fact that a partitioning requires subsets whose union is V apart from being disjoint.

Corollary 2 For any $k \geq 2$, if $\lambda_k > 0$ then for some $1 \leq l \leq k-1$, there is an lpartitioning of V into sets $P_1, ...P_l$ that is $a = (\Omega(\frac{\rho(k)}{k^2}), O(l\rho(l))) = ((\Omega(\frac{\lambda_k'}{k^2}), O(l^3\sqrt{\lambda_l})))$ clustering.

Proof. To prove the statement, we need to choose a value of l and ϵ carefully enough and apply the above theorem.

Since $\rho(k) \ge \frac{\lambda'_k}{2} > 0$ and $\rho(1) = 0, \exists l < k$ such that $\rho(l)(1 + \frac{1}{k})$ (Choosing l equal to largest index i such that $\rho(i) = 0$ suffices).

Now choose largest such l<k satisfying $\rho(l)(1+\frac{1}{k})$.

Telescoping we obtain that $\rho(k) \leq (1 + \frac{1}{k})^{k-l-1} \rho(l+1) \leq e.\rho(l+1)$. Now applying the second part theorem on l, \exists a partitioning into sets $P_1, P_2, ...P_l$ such that $\forall 1 \leq i \leq l$, $h(G[P_i]) \geq \frac{\rho(l+1)}{14kl} \geq \frac{\rho(k)}{14k^2e} \geq \frac{\lambda_k}{28k^2e} = \frac{\lambda_k}{80k^2}$ and $h(P_i) \leq l\rho(l) \leq O(l^3)\sqrt{\lambda_l}$

3.1 Proof idea for main Theorem

The first part of main theorem guarantees existence of a k disjoint sets each having $h(P_i) \leq O(\rho(k))$ and having an internal expansion $\geq \Omega \rho(k+1)$.

A "wrong" way to prove the result would be to argue that there exists k disjoint sets, say $P_1, ... P_l$ with $h(A_i) \leq \rho(k)$.

Now if we split any of these further we have a k+1 disjoint subsets and hence $h_{in} \ge \rho(k+1)$.

The fallacy is that on partitioning one of the sets say P_i into say B_1 and B_1 some of the edges from B_1 go outside P_i as well.

The proof could have "worked" if we could ensure that for any P_i , any proper subset of P_i , say B, out of all edges which go outside B, a large fraction of them go into edges within P_i .

To state this formally we need a definition.

Definition 4 For any set
$$P \subseteq V$$
 and $S \subset P$, define $\psi(S,P) = \frac{w(S,P/S)}{w(S,V/P) \cdot \frac{vol(P-S)}{vol(P)}}$

The proof of part 1 works in 2 steps as follows:-

1. First it is shown that for a graph satisfying conditions of theorem and disjoint sets $A_1, ... A_k$, satisfying $h(A_i) \leq \rho(k)$ we can construct k sets $B_1, ..., B_k$ where $B_i \subseteq A_i$, $h(B_i) \leq h(A_i)$ and $\psi(S, B_i) \geq \frac{\epsilon}{3}$ for every $S \subset B_i$.

This can be proved by starting from sets $B_i = A_i$ (initial assignment) and arbitrarily picking sets B_i , S which violate the condition, and setting B_i =S or B_i/S whichever has lesser expansion.

It can be proved that at each stage $h(B_i)$ decreases.

Moreover $\psi(S, B_i) \geq \frac{\epsilon}{3}$ for every $S \subset B_i$ is ensured as a terminating condition.

2. Further it can be shown that if B_i satisfy the condition stated in above step, then $h(G[B_i]) \geq \frac{\epsilon \rho(k+1)}{7}$

The proof of second part works by first finding disjoint sets satisfying the first part of the theorem. Using the same we can extend it to a valid partitioning.

Initialise each $P_i = B_i$ for $i \le k-1$ and $P_k = V - B_1 - B_2 - ... B_k$ (where B_i 's are disjoint subsets from first part).

Now we ensure that a large fraction of edges from $P_i - B_i$ enter P_i . Formally we need $w(S, P_i/S) \leq \frac{w(S, V/S)}{k}$ for every $S \subseteq P_i - B_i$.

4 Conclusion

The paper also gives an algorithmic result for the same which is slightly weaker. The paper has thus shown an existential result for a good (h_{in}, h_{out}) clustering for a constant gap between $\rho(k)$ and $\rho(k+1)$. It is suggested as an open problem if the analysis can be extended to the case when there is a constant gap between λ'_k and λ'_{k+1} . Currently this requires a larger gap.

References

- [1] Gharan, Shayan Oveis, and Luca Trevisan. "Partitioning into expanders." Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2014. APA
- [2] http://math.uchicago.edu/may/REU2013/REUPapers/Marsden.pdf