Partitioning Into Expanders:Gharan and Trevisan

Dhiraj Madan
Entry No.: 2011CS50545

1 Review

Earlier we have seen some of the spectral properties of a graph.To review for a d-regular graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with adjacency matrix A , we defined a normalised adjacency matrix $\mathrm{M}=\frac{A}{d}$. We also defined a notion of expansion of a cut (S, \bar{S}) as $\mathrm{h}(\mathrm{S})=\frac{E(S, \bar{S})}{\min |S|,|\bar{S}|}$. We denoted the eigen values of M by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. It was then shown that:-

1. $1=\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{n} \geq-1$
2. $\lambda_{2}=1$ iff G is disconnected
3. $\lambda_{n}=-1$ iff G is bipartite

We also proved a softer version of statement 2 as cheeger's inequality i.e.

Cheeger's Inequality:

$\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}$
Note:The same results also hold for a weighted graph which is not d regular.In that case we define define a matrix of degrees D , with $D_{i i}=$ degree of vertex $\mathrm{i}=\sum_{j} w(i, j)$ and $D_{i j}=$ $0 \forall i \neq j$. Then M is given by $\mathrm{L}=D^{-1 / 2} A D^{-1 / 2}$. It may be noted that $M=\frac{A}{d}$ for a d-regular graph. The above results however hold in general for the generalised definition of M.In this case we define the expansion as $\frac{w(S, \bar{S})}{\operatorname{vol}(S)}$, where $\operatorname{vol}(S)=\sum_{u \in S} \sum_{v i n V} w(u, v) \cdot h(G)=$ $\min _{S: v o l(S) \leq \frac{v o l(S)}{2}} h(S)$ In today's discussion we will generalise this setting in several ways:-

1. We will consider a generalised definition of a partition into several components which may be larger than 2 .We will have to generalise the notion of expansion factor for the same.
2. Secondly we will also generalise the definition to ensure that the number of edges to break 2 different components of parttition is small,but the same to break a single component of partition is large

To remain consistent with paper we define a notion of a laplacian matrix.
Definition 1 LaplacianFor an undirected weighted graph $G=(V, E)$, with weights a weight function $w: V X V \rightarrow \mathbb{R}^{+} \quad(w(u, v)=0$ if (u, v) is not an edge), define a matrix of degrees D, with $D_{i i}=$ degree of vertex $i=\sum_{j} w(i, j)$ and $D_{i j}=0 \forall i \neq j$. Then laplacian of G is given by $L=I-D^{-1 / 2} A D^{-1 / 2}$..e. $L=I-M$.

The eigen values of L and M have a simple relation that is:-
Lemma $1 v$ is an eigen vector of M associated with eigen value λ iff v is an eigen vector of L associated with eigen value $1-\lambda$

Proof. \Longrightarrow
$M v=\lambda v \Longrightarrow(I-M) v=v-\lambda v \Longrightarrow L v=(1-\lambda) v$
\Longleftarrow
$L v=(1-\lambda) v \Longrightarrow(I-M) v=v-\lambda v \Longrightarrow M v=\lambda v$
Denote λ_{i}^{\prime} as the $i^{\text {th }}$ smallest eigen value of L. The previous result can now be stated in terms of L as:-

1. $0=\lambda_{1}^{\prime} \leq \lambda_{2}^{\prime} \leq \ldots \lambda_{n}^{\prime} \leq 2$
2. $\lambda_{2}^{\prime}=0$ iff G is disconnected
3. $\lambda_{n}^{\prime}=2$ iff G is bipartite

Cheeger's Inequality: $\frac{\lambda_{2}^{\prime}}{2} \leq h(G) \leq \sqrt{2\left(\lambda_{2}^{\prime}\right)}$

2 Generalising the result to large number of partitions

The previous result can be generalised to the case of more than 2 disconnected components as well.

Theorem 2 If L is the laplacian of a graph G, then multiplicity of 0 as an eigen value of $L=$ Number of maximally discnnected components of G.

Proof. Let the number of disconnected components of G be k. Order the vertices so that vertices in same maximally connected component are numbered consecutively.
Let A be the adjacency matrix in this numbering. (Note that the above operation is allowed, since permuting the rows and columns of a matrix ensures that the matrices remain similar.In this case, the eigen values of the matrix do not change.)
By choice of ordering the matrix can now be partitioned into k blocks along the diagonal each corresponding to a maximally connected component of G.Say A=

$$
\left(\begin{array}{ccc}
A_{1} & 0 & 0 . . \\
0 & A_{2} & 0 . . \\
0 & 0 & . . \\
0 & 0 & . . A_{k}
\end{array}\right)
$$

Now $\mathrm{f}(\mathrm{x})=$ characteristic polynomial of A
$=\operatorname{det}(\mathrm{xI}-\mathrm{A})=\operatorname{det}\left(x I-A_{1}\right) \operatorname{det}\left(x I-A_{2}\right) \ldots \operatorname{det}\left(x I-A_{k}\right)$.
(By determinant of block decomposition) But $\operatorname{det}\left(x I-A_{i}\right)=$ characteristic polynomial of $i^{\text {th }}$ maximally connected subgraph $=f_{i}(x)$ (let).
Now $f(x)=\Pi_{i=1}^{k} f_{i}(x)$.
Now since each A_{i} is connected, the degree of x in $f_{i}(x)=$ algebraic multiplicity of eigen value 0 in $f_{i}(x)=1$
Thus algebraic multiplicity of 0 in $\mathrm{f}(\mathrm{x})$ is $\mathrm{k}\left(x^{k} \mid f(x)\right.$ and x^{k+1} does not divide $\left.\mathrm{f}(\mathrm{x})\right)$.
Thus geometric multiplicity of 0 as an eigen value of $f(x)=$ algebraic multiplicity of 0 as an eigen value of $f(x)=k$.

Corollary 1 For a graph $G=(V, E)$ with eigen values of laplacian(in non decreasing order) as $\lambda_{i}^{\prime}, \lambda_{k}^{\prime}=0$ iff G has at least k disconnected components.

Proof. $\lambda_{k}^{\prime}=0$ iff multiplicity of 0 as an eigen value $\geq \mathrm{k}$.(Follows from the fact that λ_{i}^{\prime} form a non decreasing sequence and $\lambda_{1}^{\prime}=0$). But multiplicity of 0 as an eigen value $=$ Number of maximally connected components.(Proved above). Thus $\lambda_{k}^{\prime}=0$ iff G has at least k disconnected components.

To state a generalised version of Cheeger's inequality, we need to generalise the definition of expansion factor.

Definition $2 \rho(k)$ Define $\rho(k)=\min _{A_{1}, \ldots, A_{k}, A_{i} \neq \phi, A_{i} \cap A_{j} \neq \phi, i \neq j} \operatorname{maxh}\left(A_{i}\right)$.
Note that A_{i} are only required to be disjoint and need not form a partition of V.Moreover though A_{i} can not be empty sets, the definition does not explicitly state $A_{i} \neq V$. This will implied when $k \geq 2$, but the ρ is well defined to $\mathrm{k}=1$ as well.

Observations

1. $\rho(1)=0$.Choose $A_{1}=\mathrm{V}$. Now $\mathrm{h}(\mathrm{V})=0$.
2. $\rho(2)=h(G)$.Though it appears intuitive , the subtlety is that the definition of ρ does not restrict A_{1}, A_{2} to be a partitioning,only the condition that they are disjoint suffices.
Proof.

- $\rho(2) \leq h(G)$

Let $S \subset V$ that realises $\mathrm{h}(\mathrm{G})$ with $\operatorname{vol}(S) \leq \frac{\operatorname{vol}(V)}{2}$. Clearly $h(\bar{S}) \leq h(S)$ (Since volume is larger but weights of edges going across is same). Thus $\max (h(S), h(\bar{S}))=$ $h(S)$.Since $\rho(2)=\min _{A_{1}, A_{2}, \text { disjoint and non empty }} \max \left(h\left(A_{1}\right), h\left(A_{2}\right)\right)$ $\leq \max (\max (h(S), h(\bar{S})))=h(G)$.

- $h(G) \leq \rho(2)$

Let A_{1} and A_{2} be the disjoint sets that realise $\rho(2)$.Now $\operatorname{vol}\left(A_{1}\right)+\operatorname{vol}\left(A_{2}\right) \leq$ $\operatorname{vol}(V)$.Thus one of these must have volume $\leq \frac{\operatorname{vol}(V)}{2}$.
WLOG assume $\operatorname{vol}\left(A_{1}\right) \leq \frac{\operatorname{vol}(V)}{2}$.
Now $\rho(2)=\max \left(h\left(A_{1}\right), h\left(A_{2}\right)\right) \geq h\left(A_{1}\right) \geq h(G)$.
Thus $\rho(2)=h(G)$
3. $0=\rho(1) \leq \rho(2) \leq \rho(3) \ldots \leq \rho(n)$

It turns that cheeger's inequality can be generalised in terms of ρ for any arbitrary k.
Theorem 3 (LOT12) For any graph G, with λ_{i}^{\prime} being the $i^{\text {th }}$ smallest eigen value of its laplacian, and for an arbitrary $k \geq 2$, we have the following:$\frac{\lambda_{k}^{\prime}}{2} \leq \rho(k) \leq O\left(k^{2}\right) \sqrt{\lambda_{k}^{\prime}}$.

3 Partitioning into expanders:Main Result

Ideally we would like to partition a graph into subsets of vertices such that it is easy to disconnect any 2 distinct subsets, but not so easy to disconnect any 1 subset.In order to mathematically define such a partitioning, we define a notion of ($h_{\text {in }}, h_{\text {out }}$) clustering.

Definition 3 We say k disjoint subsets $A_{1}, \ldots A_{k}$ of V are a $\left(h_{i n}, h_{\text {out }}\right)$ clustering if for all $1 \leq i \leq k, h\left(G\left[A_{i}\right]\right) \geq h_{\text {in }}$ and $h\left(A_{i}\right) \leq h_{\text {out }}$

Here $h\left(G\left[A_{i}\right]\right)$ refers to the expansion factor of the subgraph induced on A_{i} (considering all valid cuts in this subgraph). On the other hand $h\left(A_{i}\right)$ considers a single cut A_{i} as a part of the original graph. The definition captures the requirement that it should be difficult to disconnect a valid subset, but easy 2 disconnect 2 distinct components.

Theorem 4 If for a graph $G, \rho(k+1)>(1+\epsilon) \rho(k)$,for some $0<\epsilon<1$, then

1. There exists k disjoint subsets of V that form $a(\epsilon \rho(k+1) / 7, \rho(k))$ clustering.
2. There exists a k partitioning of V that is a $(\epsilon \rho(k+1) /(14 k), k \rho(k))$

Note that the parts 1 and 2 of above theorem differ in the fact that a partitioning requires subsets whose union is V apart from being disjoint.

Corollary 2 For any $k \geq 2$, if $\lambda_{k}>0$ then for some $1 \leq l \leq k-1$, there is an l partitioning of V into sets $P_{1}, \ldots P_{l}$ that is a $=\left(\Omega\left(\frac{\rho(k)}{k^{2}}\right), O(l \rho(l))\right)=\left(\left(\Omega\left(\frac{\lambda_{k}^{\prime}}{k^{2}}\right), O\left(l^{3} \sqrt{\lambda_{l}}\right)\right)\right)$ clustering.

Proof. To prove the statement, we need to choose a value of l and ϵ carefully enough and apply the above theorem.
Since $\rho(k) \geq \frac{\lambda_{k}^{\prime}}{2}>0$ and $\rho(1)=0, \exists l<k$ such that $\rho(l)\left(1+\frac{1}{k}\right)$ (Choosing l equal to largest index i such that $\rho(i)=0$ suffices).
Now choose largest such $l<\mathrm{k}$ satisfying $\rho(l)\left(1+\frac{1}{k}\right)$.
Telescoping we obtain that $\rho(k) \leq\left(1+\frac{1}{k}\right)^{k-l-1} \rho(l+1) \leq e . \rho(l+1)$. Now applying the second part theorem on $1, \exists$ a partitioning into sets $P_{1}, P_{2}, \ldots P_{l}$ such that $\forall 1 \leq i \leq l$, $h\left(G\left[P_{i}\right]\right) \geq \frac{\rho(l+1)}{14 k l} \geq \frac{\rho(k)}{14 k^{2} e} \geq \frac{\lambda_{k}}{28 k^{2} e}=\frac{\lambda_{k}}{80 k^{2}}$ and $h\left(P_{i}\right) \leq l \rho(l) \leq O\left(l^{3}\right) \sqrt{\lambda_{l}}$

3.1 Proof idea for main Theorem

The first part of main theorem guarantees existence of a k disjoint sets each having $h\left(P_{i}\right) \leq O(\rho(k))$ and having an internal expansion $\geq \Omega \rho(k+1)$.
A "wrong" way to prove the result would be to argue that there exists k disjoint sets, say $P_{1}, \ldots P_{l}$ with $h\left(A_{i}\right) \leq \rho(k)$.
Now if we split any of these further we have a $\mathrm{k}+1$ disjoint subsets and hence $h_{\text {in }} \geq$ $\rho(k+1)$.
The fallacy is that on partitioning one of the sets say P_{i} into say B_{1} and B_{1} some of the edges from B_{1} go outside P_{i} as well.
The proof could have "worked" if we could ensure that for any P_{i}, any proper subset of P_{i} ,say B, out of all edges which go outside B, a large fraction of them go into edges within P_{i}.
To state this formally we need a definition.
Definition 4 For any set $P \subseteq V$ and $S \subset P$, define $\psi(S, P)=\frac{w(S, P / S)}{w(S, V / P) \frac{v o l(P-S)}{v o l(P)}}$
The proof of part 1 works in 2 steps as follows:-

1. First it is shown that for a graph satisfying conditions of theorem and disjoint sets $A_{1}, \ldots A_{k}$,satisfying $h\left(A_{i}\right) \leq \rho(k)$ we can construct k sets B_{1}, \ldots, B_{k} where $B_{i} \subseteq A_{i}$, $h\left(B_{i}\right) \leq h\left(A_{i}\right)$ and $\psi\left(S, B_{i}\right) \geq \frac{\epsilon}{3}$ for every $S \subset B_{i}$.
This can be proved by starting from sets $B_{i}=A_{i}$ (initial assignment) and arbitrarily picking sets $B_{i}, \mathrm{~S}$ which violate the condition, and setting $B_{i}=\mathrm{S}$ or B_{i} / S whichever has lesser expansion.
It can be proved that at each stage $h\left(B_{i}\right)$ decreases.
Moreover $\psi\left(S, B_{i}\right) \geq \frac{\epsilon}{3}$ for every $S \subset B_{i}$ is ensured as a terminating condition.
2. Further it can be shown that if B_{i} satisfy the condition stated in above step, then $h\left(G\left[B_{i}\right]\right) \geq \frac{\epsilon \rho(k+1)}{7}$

The proof of second part works by first finding disjoint sets satisfying the first part of the theorem.Using the same we can extend it to a valid partitioning.
Initialise each $P_{i}=B_{i}$ for $i \leq k-1$ and $P_{k}=V-B_{1}-B_{2}-\ldots B_{k}$ (where B_{i} 's are disjoint subsets from first part).

Now we ensure that a large fraction of edges from $P_{i}-B_{i}$ enter P_{i}. Formally we need $w\left(S, P_{i} / S\right) \leq \frac{w(S, V / S)}{k}$ for every $S \subseteq P_{i}-B_{i}$.

4 Conclusion

The paper also gives an algorithmic result for the same which is slightly weaker. The paper has thus shown an existential result for a good ($h_{\text {in }}, h_{\text {out }}$) clustering for a constant gap between $\rho(k)$ and $\rho(k+1)$. It is suggested as an open problem if the analysis can be extended to the case when there is a constant gap between λ_{k}^{\prime} and λ_{k+1}^{\prime}. Currently this requires a larger gap.

References

[1] Gharan, Shayan Oveis, and Luca Trevisan. "Partitioning into expanders." Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2014. APA
[2] http://math.uchicago.edu/ may/REU2013/REUPapers/Marsden.pdf

