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Streaming Clustering

Here are some of the results known for the streaming
k-means/median.

Algorithm Space requirement Approximation

[GNMO00] O(nc) O(21/c)

[MCP03] O(k · polylog(n)) O(1)

[C09] O
(
dk
ε (log n)8

)
(1 + ε)

We already studied the first one. We shall skip the second
result (project topic). The third result is through a concept
known as coreset which we will not discuss (project topic).

We will look at the notion of coresets and see how to use
them to construct streaming algorithms.
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Streaming Clustering

Before we study the concept of coresets, let us see whether it
is possible to get a (1 + ε)-approximation for the k-means
problem.

There are algorithms that run in time O(nd · 2Õ(k/ε)) and give
a (1 + ε)-approximation guarantee for the k-means problem.
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Streaming Clustering using Coresets

Coreset

A corset is a subset of input such that we can get a good
approximation to the original input by solving the optimisation
problem directly on the coreset.

(k , ε)-coreset for k-means/median: For a weighted point set

P ⊂ Rd , a weighted set S ⊂ Rd is a (k , ε)-coreset of P for
k-means/median clustering, if for any set C of k points in Rd ,
we have:

(1− ε) · ΦC (P) ≤ ΦC (S) ≤ (1 + ε) · ΦC (P).
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Streaming Clustering using Coresets

(k , ε)-coreset for k-means/median: For a weighted point set

P ⊂ Rd , a weighted set S ⊂ Rd is a (k , ε)-coreset of P for
k-means/median clustering, if for any set C of k points in Rd ,
we have:

(1− ε) · ΦC (P) ≤ ΦC (S) ≤ (1 + ε) · ΦC (P).

There is an algorithm that outputs a (k , ε) coreset of size
O(k2ε−2(log n)2) in a general metric space and a
(k , ε)-coreset of size O(dk2ε−2 log n log (k/ε) in Rd .
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Streaming Clustering using Coresets

Claim 1: If C1 and C2 are the (k , ε) for disjoint sets P1 and
P2 respectively, then C1 ∪ C2 is a (k , ε) coreset for P1 ∪ P2.
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Streaming Clustering using Coresets

Claim 1: If C1 and C2 are the (k , ε) for disjoint sets P1 and
P2 respectively, then C1 ∪ C2 is a (k , ε) coreset for P1 ∪ P2.

Claim 2: If C1 is a (k , ε)-coreset for C2 and C2 is a
(k , δ)-coreset for C3, then C1 is a (k , ε+ δ + ε · δ)-coreset for
C3.
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Streaming Clustering using Coresets

Claim 1: If C1 and C2 are the (k , ε) for disjoint sets P1 and
P2 respectively, then C1 ∪ C2 is a (k , ε) coreset for P1 ∪ P2.

Claim 2: If C1 is a (k , ε)-coreset for C2 and C2 is a
(k , δ)-coreset for C3, then C1 is a (k , ε+ δ + ε · δ)-coreset for
C3.

How do we obtain a streaming algorithm for the k-means
problem that uses only space that has logarithmic dependence
on the stream size using the above claims?
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Streaming Clustering using Coresets

- Claim 1: If C1 and C2 are the (k, ε) for disjoint sets P1 and P2 respectively, then C1 ∪ C2 is a (k, ε) coreset for
P1 ∪ P2.
- Claim 2: If C1 is a (k, ε)-coreset for C2 and C2 is a (k, δ)-coreset for C3, then C1 is a (k, ε+ δ + ε · δ)-coreset for C3.

- Claim 3: There is an algorithm that outputs a (k, ε) coreset of size O(k2ε−2(log n)2) in a general metric space and a

(k, ε)-coreset of size O(dk2ε−2 log n log (k/ε).

- Claim 4: There are algorithms that run in time O(nd · 2Õ(k/ε)) and give a (1 + ε)-approximation guarantee for the

k-means problem.

Consider hypothetical buckets P0,P1, ...,Pdlog ne such that

|Pi | = 2i ·M, where M = (k/ε)2.
As the data comes, we will try putting in the bucket P0. In case
this is full, we try to move the contents of P0 to P1 is possible
and so on.
We try to maintain (k, δj)-coreset for Pj at all times, where

1 + δj =
∏j

l=0(1 + ρl) and ρj = ε
c(j+1)2

.
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Streaming Clustering using Coresets

- Claim 1: If C1 and C2 are the (k, ε) for disjoint sets P1 and P2 respectively, then C1 ∪ C2 is a (k, ε) coreset for
P1 ∪ P2.
- Claim 2: If C1 is a (k, ε)-coreset for C2 and C2 is a (k, δ)-coreset for C3, then C1 is a (k, ε+ δ + ε · δ)-coreset for C3.

- Claim 3: There is an algorithm that outputs a (k, ε) coreset of size O(k2ε−2(log n)2) in a general metric space and a

(k, ε)-coreset of size O(dk2ε−2 log n log (k/ε).

- Claim 4: There are algorithms that run in time O(nd · 2Õ(k/ε)) and give a (1 + ε)-approximation guarantee for the

k-means problem.

Consider hypothetical buckets P0,P1, ...,Pdlog ne such that

|Pi | = 2i ·M, where M = (k/ε)2.
As the data comes, we will try putting in the bucket P0. In case
this is full, we try to move the contents of P0 to P1 is possible
and so on.
We try to maintain (k, δj)-coreset for Pj at all times, where

1 + δj =
∏j

l=0(1 + ρl) and ρl = ε
c(j+1)2

.

Claim 5: There is a streaming algorithm that outputs a
(1 + ε)-approximate solution using space O((dk/ε)2 · (log n)8)
and amortised update time O(dk · polylog(ndk/ε)).
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