COL870: Clustering Algorithms

Ragesh Jaiswal, CSE, IIT Delhi

Streaming Clustering

Streaming Clustering

- Here are some of the results known for the streaming k-means/median.

Algorithm	Space requirement	Approximation
$[\mathrm{GNMO} 00]$	$O\left(n^{c}\right)$	$O\left(2^{1 / c}\right)$
$[\mathrm{MCP} 03]$	$O(k \cdot p o l y \log (n))$	$O(1)$
$[\mathrm{C} 09]$	$O\left(\frac{d k}{\varepsilon}(\log n)^{8}\right)$	$(1+\varepsilon)$

- We already studied the first one. We shall skip the second result (project topic). The third result is through a concept known as coreset which we will not discuss (project topic).
- We will look at the notion of coresets and see how to use them to construct streaming algorithms.

Streaming Clustering

- Before we study the concept of coresets, let us see whether it is possible to get a $(1+\varepsilon)$-approximation for the k-means problem.
- There are algorithms that run in time $O\left(n d \cdot 2^{\tilde{O}(k / \varepsilon)}\right)$ and give a $(1+\varepsilon)$-approximation guarantee for the k-means problem.

Streaming Clustering using Coresets

Coreset

A corset is a subset of input such that we can get a good approximation to the original input by solving the optimisation problem directly on the coreset.

- (k, ε)-coreset for k-means/median: For a weighted point set $P \subset \mathbb{R}^{d}$, a weighted set $S \subset \mathbb{R}^{d}$ is a (k, ε)-coreset of P for k-means/median clustering, if for any set C of k points in \mathbb{R}^{d}, we have:

$$
(1-\varepsilon) \cdot \Phi_{C}(P) \leq \Phi_{C}(S) \leq(1+\varepsilon) \cdot \Phi_{C}(P)
$$

Streaming Clustering using Coresets

- (k, ε)-coreset for k-means/median: For a weighted point set $P \subset \mathbb{R}^{d}$, a weighted set $S \subset \mathbb{R}^{d}$ is a (k, ε)-coreset of P for k-means/median clustering, if for any set C of k points in \mathbb{R}^{d}, we have:

$$
(1-\varepsilon) \cdot \Phi_{C}(P) \leq \Phi_{C}(S) \leq(1+\varepsilon) \cdot \Phi_{C}(P)
$$

- There is an algorithm that outputs a (k, ε) coreset of size $O\left(k^{2} \varepsilon^{-2}(\log n)^{2}\right)$ in a general metric space and a (k, ε)-coreset of size $O\left(d k^{2} \varepsilon^{-2} \log n \log (k / \varepsilon)\right.$ in \mathbb{R}^{d}.

Streaming Clustering using Coresets

- Claim 1: If C_{1} and C_{2} are the (k, ε) for disjoint sets P_{1} and P_{2} respectively, then $C_{1} \cup C_{2}$ is a (k, ε) coreset for $P_{1} \cup P_{2}$.

Streaming Clustering using Coresets

- Claim 1: If C_{1} and C_{2} are the (k, ε) for disjoint sets P_{1} and P_{2} respectively, then $C_{1} \cup C_{2}$ is a (k, ε) coreset for $P_{1} \cup P_{2}$.
- Claim 2: If C_{1} is a (k, ε)-coreset for C_{2} and C_{2} is a (k, δ)-coreset for C_{3}, then C_{1} is a $(k, \varepsilon+\delta+\varepsilon \cdot \delta)$-coreset for C_{3}.

Streaming Clustering using Coresets

- Claim 1: If C_{1} and C_{2} are the (k, ε) for disjoint sets P_{1} and P_{2} respectively, then $C_{1} \cup C_{2}$ is a (k, ε) coreset for $P_{1} \cup P_{2}$.
- Claim 2: If C_{1} is a (k, ε)-coreset for C_{2} and C_{2} is a (k, δ)-coreset for C_{3}, then C_{1} is a $(k, \varepsilon+\delta+\varepsilon \cdot \delta)$-coreset for C_{3}.
- How do we obtain a streaming algorithm for the k-means problem that uses only space that has logarithmic dependence on the stream size using the above claims?

Streaming Clustering using Coresets

- Claim 1: If C_{1} and C_{2} are the (k, ε) for disjoint sets P_{1} and P_{2} respectively, then $C_{1} \cup C_{2}$ is a (k, ε) coreset for $P_{1} \cup P_{2}$.
- Claim 2: If C_{1} is a (k, ε)-coreset for C_{2} and C_{2} is a (k, δ)-coreset for C_{3}, then C_{1} is a $(k, \varepsilon+\delta+\varepsilon \cdot \delta)$-coreset for C_{3}.
- Claim 3: There is an algorithm that outputs a (k, ε) coreset of size $O\left(k^{2} \varepsilon^{-2}(\log n)^{2}\right)$ in a general metric space and a (k, ε)-coreset of size $O\left(d k^{2} \varepsilon^{-2} \log n \log (k / \varepsilon)\right.$.
- Claim 4: There are algorithms that run in time $O\left(n d \cdot 2^{\tilde{O}(k / \varepsilon)}\right.$) and give a $(1+\varepsilon)$-approximation guarantee for the k-means problem.
- Consider hypothetical buckets $P_{0}, P_{1}, \ldots, P_{\lceil\log n\rceil}$ such that $\left|P_{i}\right|=2^{i} \cdot M$, where $M=(k / \varepsilon)^{2}$.
- As the data comes, we will try putting in the bucket P_{0}. In case this is full, we try to move the contents of P_{0} to P_{1} is possible and so on.
- We try to maintain $\left(k, \delta_{j}\right)$-coreset for P_{j} at all times, where $1+\delta_{j}=\prod_{l=0}^{j}\left(1+\rho_{l}\right)$ and $\rho_{j}=\frac{\varepsilon}{c(j+1)^{2}}$.

Streaming Clustering using Coresets

```
- Claim 1:
P1\cupP2.
- Claim 2: If C1 is a ( }k,\varepsilon)\mathrm{ -coreset for }\mp@subsup{C}{2}{}\mathrm{ and }\mp@subsup{C}{2}{}\mathrm{ is a ( }k,\delta)\mathrm{ -coreset for }\mp@subsup{C}{3}{}\mathrm{ , then }\mp@subsup{C}{1}{}\mathrm{ is a ( }k,\varepsilon+\delta+\varepsilon+\delta)\mathrm{ -coreset for }\mp@subsup{C}{3}{}\mathrm{ .
- Claim 3: There is an algorithm that outputs a (k,\varepsilon) coreset of size O(k2 的-2}(\operatorname{log}n\mp@subsup{)}{}{2})\mathrm{ in a general metric space and a
(k,\varepsilon)-coreset of size}O(d\mp@subsup{k}{}{2}\mp@subsup{\varepsilon}{}{-2}\operatorname{log}n\operatorname{log}(k/\varepsilon)
- Claim 4: There are algorithms that run in time O(nd}\cdot\mp@subsup{2}{}{\tilde{O}(k/\varepsilon)})\mathrm{ and give a (1+ ह)-approximation guarantee for the
k-means problem.
```

- Consider hypothetical buckets $P_{0}, P_{1}, \ldots, P_{\lceil\log n\rceil}$ such that $\left|P_{i}\right|=2^{i} \cdot M$, where $M=(k / \varepsilon)^{2}$.
- As the data comes, we will try putting in the bucket P_{0}. In case this is full, we try to move the contents of P_{0} to P_{1} is possible and so on.
- We try to maintain $\left(k, \delta_{j}\right)$-coreset for P_{j} at all times, where $1+\delta_{j}=\prod_{l=0}^{j}\left(1+\rho_{l}\right)$ and $\rho_{j}=\frac{\varepsilon}{c(j+1)^{2}}$.

Streaming Clustering using Coresets

- Claim 1: If C_{1} and C_{2} are the (k, ε) for disjoint sets P_{1} and P_{2} respectively, then $C_{1} \cup C_{2}$ is a (k, ε) coreset for $P_{1} \cup P_{2}$.
- Claim 2: If C_{1} is a (k, ε)-coreset for C_{2} and C_{2} is a (k, δ)-coreset for C_{3}, then C_{1} is a $(k, \varepsilon+\delta+\varepsilon \cdot \delta)$-coreset for C_{3}.
- Claim 3: There is an algorithm that outputs a (k, ε) coreset of size $O\left(k^{2} \varepsilon^{-2}(\log n)^{2}\right)$ in a general metric space and a (k, ε)-coreset of size $O\left(d k^{2} \varepsilon^{-2} \log n \log (k / \varepsilon)\right.$.
- Claim 4: There are algorithms that run in time $O\left(n d \cdot 2^{\tilde{O}(k / \varepsilon)}\right.$) and give a $(1+\varepsilon)$-approximation guarantee for the k-means problem.
- Consider hypothetical buckets $P_{0}, P_{1}, \ldots, P_{\lceil\log n\rceil}$ such that $\left|P_{i}\right|=2^{i} \cdot M$, where $M=(k / \varepsilon)^{2}$.
- As the data comes, we will try putting in the bucket P_{0}. In case this is full, we try to move the contents of P_{0} to P_{1} is possible and so on.
- We try to maintain $\left(k, \delta_{j}\right)$-coreset for P_{j} at all times, where $1+\delta_{j}=\prod_{l=0}^{j}\left(1+\rho_{l}\right)$ and $\rho_{l}=\frac{\varepsilon}{c(j+1)^{2}}$.
- Claim 5: There is a streaming algorithm that outputs a $(1+\varepsilon)$-approximate solution using space $O\left((d k / \varepsilon)^{2} \cdot(\log n)^{8}\right)$ and amortised update time $O(d k \cdot p o l y \log (n d k / \varepsilon))$.

End

