COL870: Clustering Algorithms

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

Streaming Clustering

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

• Here are some of the results known for the streaming *k*-means/median.

Algorithm	Space requirement	Approximation
[GNMO00]	$O(n^c)$	$O(2^{1/c})$
[MCP03]	$O(k \cdot polylog(n))$	<i>O</i> (1)
[C09]	$O\left(\frac{dk}{\varepsilon}(\log n)^8\right)$	$(1 + \varepsilon)$

- We already studied the first one. We shall skip the second result (project topic). The third result is through a concept known as coreset which we will not discuss (project topic).
- We will look at the notion of coresets and see how to use them to construct streaming algorithms.

- Before we study the concept of coresets, let us see whether it is possible to get a $(1 + \varepsilon)$ -approximation for the *k*-means problem.
- There are algorithms that run in time O(nd · 2^{Õ(k/ε)}) and give a (1 + ε)-approximation guarantee for the k-means problem.

Coreset

A corset is a subset of input such that we can get a good approximation to the original input by solving the optimisation problem directly on the coreset.

 (k,ε)-coreset for k-means/median: For a weighted point set
 P ⊂ ℝ^d, a weighted set S ⊂ ℝ^d is a (k,ε)-coreset of P for
 k-means/median clustering, if for any set C of k points in ℝ^d,
 we have:

$$(1-\varepsilon)\cdot \Phi_{\mathcal{C}}(\mathcal{P})\leq \Phi_{\mathcal{C}}(\mathcal{S})\leq (1+\varepsilon)\cdot \Phi_{\mathcal{C}}(\mathcal{P}).$$

• (k,ε) -coreset for k-means/median: For a weighted point set $P \subset \mathbb{R}^d$, a weighted set $S \subset \mathbb{R}^d$ is a (k,ε) -coreset of P for k-means/median clustering, if for any set C of k points in \mathbb{R}^d , we have:

$$(1-\varepsilon) \cdot \Phi_{\mathcal{C}}(\mathcal{P}) \leq \Phi_{\mathcal{C}}(\mathcal{S}) \leq (1+\varepsilon) \cdot \Phi_{\mathcal{C}}(\mathcal{P}).$$

There is an algorithm that outputs a (k, ε) coreset of size O(k²ε⁻²(log n)²) in a general metric space and a (k, ε)-coreset of size O(dk²ε⁻² log n log (k/ε) in ℝ^d.

 <u>Claim 1</u>: If C₁ and C₂ are the (k, ε) for disjoint sets P₁ and P₂ respectively, then C₁ ∪ C₂ is a (k, ε) coreset for P₁ ∪ P₂.

- <u>Claim 1</u>: If C₁ and C₂ are the (k, ε) for disjoint sets P₁ and P₂ respectively, then C₁ ∪ C₂ is a (k, ε) coreset for P₁ ∪ P₂.
- <u>Claim 2</u>: If C₁ is a (k, ε)-coreset for C₂ and C₂ is a (k, δ)-coreset for C₃, then C₁ is a (k, ε + δ + ε ⋅ δ)-coreset for C₃.

- <u>Claim 1</u>: If C₁ and C₂ are the (k, ε) for disjoint sets P₁ and P₂ respectively, then C₁ ∪ C₂ is a (k, ε) coreset for P₁ ∪ P₂.
- <u>Claim 2</u>: If C₁ is a (k, ε)-coreset for C₂ and C₂ is a (k, δ)-coreset for C₃, then C₁ is a (k, ε + δ + ε ⋅ δ)-coreset for C₃.
- How do we obtain a streaming algorithm for the *k*-means problem that uses only space that has logarithmic dependence on the stream size using the above claims?

- Claim 1: If C_1 and C_2 are the (k, ε) for disjoint sets P_1 and P_2 respectively, then $C_1 \cup C_2$ is a (k, ε) coreset for $P_1 \cup P_2$.

- $\underline{Claim 2}$: If C_1 is a (k, ε) -coreset for C_2 and C_2 is a (k, δ) -coreset for C_3 , then C_1 is a $(k, \varepsilon + \delta + \varepsilon \cdot \delta)$ -coreset for C_3 .

- Claim 3: There is an algorithm that outputs a (k, ε) coreset of size $O(k^2 \varepsilon^{-2} (\log n)^2)$ in a general metric space and a (k, ε) -coreset of size $O(dk^2 \varepsilon^{-2} \log n \log (k/\varepsilon)$.

- <u>Claim 4</u>: There are algorithms that run in time $O(nd \cdot 2^{\tilde{O}(k/\varepsilon)})$ and give a $(1 + \varepsilon)$ -approximation guarantee for the *k*-means problem.

- Consider hypothetical buckets $P_0, P_1, ..., P_{\lceil \log n \rceil}$ such that $|P_i| = 2^i \cdot M$, where $M = (k/\varepsilon)^2$.
- As the data comes, we will try putting in the bucket P_0 . In case this is full, we try to move the contents of P_0 to P_1 is possible and so on.
- We try to maintain (k, δ_j) -coreset for P_j at all times, where $1 + \delta_j = \prod_{l=0}^j (1 + \rho_l)$ and $\rho_j = \frac{\varepsilon}{c(j+1)^2}$.

・ロト ・同ト ・ヨト ・ヨト

- Claim 1: If C_1 and C_2 are the (k, ε) for disjoint sets P_1 and P_2 respectively, then $C_1 \cup C_2$ is a (k, ε) coreset for $P_1 \cup P_2$. - Claim 2: If C_1 is a (k, ε) -coreset for C_2 and C_2 is a (k, δ) -coreset for C_3 , then C_1 is a $(k, \varepsilon + \delta + \varepsilon \cdot \delta)$ -coreset for C_3 .

- Limit 2: If $L_1 = a(k, \varepsilon)$ -coreset for C_2 and $C_2 = a(k, \sigma)$ -coreset for C_3 , then L_1 is $a(k, \varepsilon + \sigma + \varepsilon - \sigma)$ -coreset for C_3 . - <u>Claim 3</u>: There is an algorithm that outputs $a(k, \varepsilon)$ coreset of size $O(k^2 \varepsilon^{-2}(\log n)^2)$ in a general metric space and $a(k, \varepsilon)$ -coreset of size $O(dk^2 \varepsilon^{-2} \log n \log (k/\varepsilon)$.

- <u>Claim 4</u>: There are algorithms that run in time $O(nd \cdot 2^{\tilde{O}(k/\epsilon)})$ and give a $(1 + \epsilon)$ -approximation guarantee for the

k-means problem.

- Consider hypothetical buckets $P_0, P_1, ..., P_{\lceil \log n \rceil}$ such that $|P_i| = 2^i \cdot M$, where $M = (k/\varepsilon)^2$.
- As the data comes, we will try putting in the bucket P₀. In case this is full, we try to move the contents of P₀ to P₁ is possible and so on.
- We try to maintain (k, δ_j) -coreset for P_j at all times, where $1 + \delta_j = \prod_{l=0}^{j} (1 + \rho_l)$ and $\rho_j = \frac{c}{c(i+1)^2}$.

A B + A B +

- Claim 1: If C_1 and C_2 are the (k, ε) for disjoint sets P_1 and P_2 respectively, then $C_1 \cup C_2$ is a (k, ε) coreset for $P_1 \cup P_2$.

- $\underline{Claim 2}$: If C_1 is a (k, ε) -coreset for C_2 and C_2 is a (k, δ) -coreset for C_3 , then C_1 is a $(k, \varepsilon + \delta + \varepsilon \cdot \delta)$ -coreset for C_3 .

- Claim 3: There is an algorithm that outputs a (k, ε) coreset of size $O(k^2 \varepsilon^{-2} (\log n)^2)$ in a general metric space and a (k, ε) -coreset of size $O(dk^2 \varepsilon^{-2} \log n \log (k/\varepsilon)$.

- <u>Claim 4</u>: There are algorithms that run in time $O(nd \cdot 2^{\tilde{O}(k/\varepsilon)})$ and give a $(1 + \varepsilon)$ -approximation guarantee for the *k*-means problem.

- Consider hypothetical buckets $P_0, P_1, ..., P_{\lceil \log n \rceil}$ such that $|P_i| = 2^i \cdot M$, where $M = (k/\varepsilon)^2$.
- As the data comes, we will try putting in the bucket P_0 . In case this is full, we try to move the contents of P_0 to P_1 is possible and so on.
- We try to maintain (k, δ_j) -coreset for P_j at all times, where $1 + \delta_j = \prod_{l=0}^j (1 + \rho_l)$ and $\rho_l = \frac{\varepsilon}{c(j+1)^2}$.
- <u>Claim 5</u>: There is a streaming algorithm that outputs a (1 + ε)-approximate solution using space O((dk/ε)² · (log n)⁸) and amortised update time O(dk · polylog(ndk/ε)).

End

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

イロン イロン イヨン イヨン

æ

990