COL870: Clustering Algorithms

Ragesh Jaiswal, CSE, IIT Delhi

Streaming and Online Clustering

• Online Setting: In this computational setting the data is accessed as an *endless stream*. At every time step *t*, an online algorithm should be prepared to output a solution that is good with respect to the input points seen until time *t*.

Online algorithm template for *k*-means/median/center

- Repeat forever:
 - Get a new data point x
 - Update the current set of k centers

• Is it possible to output optimal centers at every time step?

• Online Setting: In this computational setting the data is accessed as an *endless stream*. At every time step *t*, an online algorithm should be prepared to output a solution that is good with respect to the input points seen until time *t*.

Online algorithm template for *k*-means/median/center

- Repeat forever:
 - Get a new data point x
 - Update the current set of k centers
 - Is it possible to output optimal centers at every time step?
 - We will see two online algorithms for the *k*-center problem that gives an approximation factor of 8 at every time step (for any metric space).

Online Algorithm for k-center Algorithm #1

The current material is from Sanjoy Dasgupta's lecture notes.

Algorithm #1 (Doubling Algorithm) [CCFM97]

- $T \leftarrow \{ \text{first } k \text{ distinct data points} \}$
- $R \leftarrow$ smallest interpoint distance in T
- Repeat forever:

- while
$$|T| \le k$$
:
(A) - Get a new point x
- If $D(x, T) > 2R$ then $T \leftarrow T \cup \{x\}$
(B) - $T' \leftarrow \{\}$
- while there exists $z \in T$ such that $D(z, T') > 2R$
- $T' \leftarrow T' \cup \{z\}$
- $T \leftarrow T'$
(c) - $R \leftarrow 2R$

<u>Claim 1</u>: All data points seen so far are (i) within distance 2R of T at (B) and (ii) within distance 4R of T at (C).

・ロト ・同ト ・ヨト ・ヨト

The current material is from Sanjoy Dasgupta's lecture notes.

Algorithm #1 (Doubling Algorithm) [CCFM97]

- $T \leftarrow \{$ first k distinct data points $\}$
- $R \leftarrow$ smallest interpoint distance in T
- Repeat forever:

- while
$$|T| \le k$$
:
- Get a new point x
- If $D(x, T) > 2R$ then $T \leftarrow T \cup \{x\}$
(B) - $T' \leftarrow \{\}$
- while there exists $z \in T$ such that $D(z, T') > 2R$
- $T' \leftarrow T' \cup \{z\}$
- $T \leftarrow T'$
(c) - $R \leftarrow 2R$

- <u>Claim 1</u>: All data points seen so far are (i) within distance 2R of T at (B) and (ii) within distance 4R of T at (C).
- Claim 2: At (B), there are k + 1 centers at distance $\geq R$ from each other.

The current material is from Sanjoy Dasgupta's lecture notes.

Algorithm #1 (Doubling Algorithm) [CCFM97]

- $T \leftarrow \{$ first k distinct data points $\}$
- $R \leftarrow$ smallest interpoint distance in T
- Repeat forever:

- while
$$|T| \le k$$
:
(A) - Get a new point x
- If $D(x, T) > 2R$ then $T \leftarrow T \cup \{x\}$
(B) - $T' \leftarrow \{\}$
- while there exists $z \in T$ such that $D(z, T') > 2R$
- $T' \leftarrow T' \cup \{z\}$
- $T \leftarrow T'$
(c) - $R \leftarrow 2R$

- <u>Claim 1</u>: All data points seen so far are (i) within distance 2*R* of *T* at **(B)** and (ii) within distance 4*R* of *T* at **(C)**.
- <u>Claim 2</u>: At (B), there are k + 1 centers at distance ≥ R from each other.
- <u>Claim 3</u>: Whenever the algorithm is at (A), $cost(T) \le 8 \cdot cost(cost of optimal k centers for data seen so far).$

Online Algorithm for *k*-center Algorithm #2

- Suppose, we would like the online algorithm to be prepared to output a good solution at every time step for *all* values of *k*.
- We define a new data structure called a *cover tree* for the given data points $x_1, ..., x_n$ that will be used in the algorithm. We will currently assume that $D(x_i, x)_j \le 1$ for all i, j.

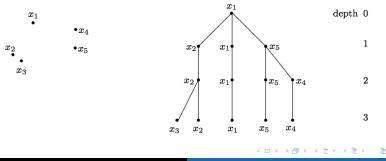
Cover Tree

- Each node of the tree is associated with one of the data points x_i.
- If a node is associated with x_i , then one of its children must also be associated with x_i .
- All nodes at depth j are at distance at least $\frac{1}{2i}$ from each other.
- Each node at depth j + 1 is within distance $\frac{1}{2i}$ of its parent.

The current material is from Sanjoy Dasgupta's lecture notes.

Cover Tree

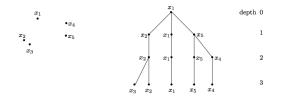
- Each node of the tree is associated with one of the data points x_i.
- If a node is associated with x_i , then one of its children must also be associated with x_i .
- All nodes at depth j are at distance at least $\frac{1}{2^{j}}$ from each other.
- Each node at depth j + 1 is within distance $\frac{1}{2i}$ of its parent.



The current material is from Sanjoy Dasgupta's lecture notes.

Cover Tree

- Each node of the tree is associated with one of the data points x_i.
- If a node is associated with x_i , then one of its children must also be associated with x_i .
- All nodes at depth j are at distance at least ¹/_{2j} from each other.
- Each node at depth j + 1 is within distance $\frac{1}{2i}$ of its parent.



 For any k, consider the deepest level of the tree with ≤ k nodes, and let T_k be those nodes. Then cost(T_k) ≤ 8 · cost(optimal k centers)

An Online Algorithm for k-means

The current material is from Sanjoy Dasgupta's lecture notes.

• Here is an online algorithm for the *k*-means problem that is used in practice.

Online k-means

- Initialise the k cenerts $t_1, ..., t_k$ in any manner
- Create counters $n_1, ..., n_k$, all initialised to 0
- Repeat forever:
 - get data point x
 - Let t_i be its closest centre

- Set
$$t_i \leftarrow rac{n_i t_i + x}{n_i + 1}$$
 and $n_i \leftarrow n_i + 1$

Streaming Algorithms

The current material is from Sanjoy Dasgupta's lecture notes.

- Streaming algorithms is expected to process a finite amount of data as opposed to online algorithms that are supposed to run forever.
- Here are the other key differences:

Online setting	Streaming setting
- Endless stream of data	- Stream of (known) length <i>n</i>
- Fixed amount of memory	- Memory available is $o(n)$
- Tested at every time step	- Tested only at the very end
- Each point is seen only once	- More than one pass may be possible

 Note that we have already seen a streaming algorithm for the k-median problem in any metric space that use n^ε memory and give an approximation factor of c^{1/ε}.

End

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

イロン イロン イヨン イヨン

æ

990