COL870: Clustering Algorithms

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

An Axiomatic Framework for Clustering

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

Axiomatic Framework for Clustering

- Given a dataset, how do we define natural clusters in the dataset?
- One way to resolve the above question is to define a clustering function that takes a dataset as input and output a partition/clustering of the dataset and then trying to figure out the specific properties that this function should satisfy.
- In other words, in what ways does a clustering function differ from an arbitrary function that takes the dataset as input and outputs a partitioning of the dataset?
- So, we would like to define some basic axioms/properties that clustering functions should satisfy.
- We will study a specific axiomatic framework, known as *Klienberg's framework* and see how no function could simultaneously satisfy a set of axioms (*an impossibility result*) that appear to be natural properties for clustering.

Axiomatic Framework for Clustering Kleinberg's Framework

- We will use *S* to denote the dataset.
- <u>Definition</u>: Any function $D: S \times S \rightarrow \mathbb{R}$ is a distance function if it satisfies the following two properties:
 - $\forall x, y \in S, D(x, y) \ge 0$ with equality iff x = y.
 - $\forall x, y \in S, D(x, y) = D(y, x).$
- We will consider clustering functions that take only S and D as input. So, we consider functions f takes an |S| × |S| matrix denoting distances and outputs a partitioning Γ of the dataset. For example:

$$f\left(\begin{array}{rrr} 0 & 10 & 10\\ 10 & 0 & 1\\ 10 & 1 & 0 \end{array}\right) = (\{1\}, \{2,3\})$$

Axiomatic Framework for Clustering Kleinberg's Framework

- We will use *S* to denote the dataset.
- <u>Definition</u>: Any function D : S × S → ℝ is a distance function if it satisfies the following two properties:
 - $\forall x, y \in S, D(x, y) \ge 0$ with equality iff x = y.

•
$$\forall x, y \in S, D(x, y) = D(y, x).$$

- We will consider clustering functions that take only S and D as input. So, we consider functions f takes an |S| × |S| matrix denoting distances and outputs a partitioning Γ of the dataset.
- Following are three reasonable axioms that any reasonable clustering function should satisfy:
 - **1** <u>Scale Invariance</u>: For any $\alpha > 0$ and any D, $f(\alpha \cdot D) = f(D)$.
 - 2 <u>Richness</u>: $Range(f) = \{ all possible partitions of [n] \}.$
 - **3** Consistency: If $f(D) = \Gamma$ and D' is a " Γ -enhancing" transformation of D, then $f(D') = \Gamma$.
 - D' is a Γ -enhancing transformation of D if

 $D'(i,j) \leq D(i,j)$ for i,j in the same cluster of Γ $D'(i,j) \geq D(i,j)$ for i,j in different cluster of Γ

Axiomatic Framework for Clustering Kleinberg's Framework

- We will use S to denote the dataset.
- <u>Definition</u>: Any function D : S × S → ℝ is a distance function if it satisfies the following two properties:
 - $\forall x, y \in S, D(x, y) \ge 0$ with equality iff x = y.

•
$$\forall x, y \in S, D(x, y) = D(y, x).$$

- We will consider clustering functions that take only S and D as input. So, we consider functions f takes an $|S| \times |S|$ matrix denoting distances and outputs a partitioning Γ of the dataset.
- Following are three reasonable axioms that any reasonable clustering function should satisfy:
 - **(**) <u>Scale Invariance</u>: For any $\alpha > 0$ and any D, $f(\alpha \cdot D) = f(D)$.
 - Q <u>Richness</u>: Range(f) = {all possible partitions of [n]}.
 - Source Consistency: If $f(D) = \Gamma$ and D' is a " Γ -enhancing" transformation of D, then $f(D') = \Gamma$.
 - D' is a Γ -enhancing transformation of D if
 - $D'(i,j) \leq D(i,j)$ for i,j in the same cluster of Γ
 - $D'(i,j) \ge D(i,j)$ for i,j in different cluster of Γ

Theorem

There is no clustering function that satisfies all three axioms.

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

End

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

イロン イロン イヨン イヨン

æ

990