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Hierarchical Clustering

When clustering data by solving the k-means/median/center
problem, how do we know the value of k (i.e., the number of
clusters)?

Idea 1: Run algorithms for various values of k.
Idea 2: Hierarchical Clustering: Do a recursive partitioning of
the dataset. This gives clustering for all values of k.
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Lecture 4 — Hierarchical clustering

4.1 Multiple levels of granularity

So far we’ve talked about the k-center, k-means, and k-medoid problems, all of which involve pre-specifying
the number of clusters k. How can one do this? Well, if clustering is being used for vector quantization,
then k is automatically supplied by the domain and represents the amount of memory available or perhaps
the communication bandwidth. On the other hand, if clustering is being used to find meaningful structure
in data, then there really is no simple way to know what k ought to be.

In fact, there isn’t necessarily a “right” value of k. In the picture below, should k be 2, or 3, or 12?

One way to avoid this problem is to do a hierarchical clustering of the data. If there are n data points,
this is a recursive partitioning into 1, 2, . . . , n clusters. It specifies clusterings at all granularities, simulta-
neously. Here’s an example with five data points. The 2-clustering is {1, 2, 3}, {4, 5}, the 3-clustering is
{1, 2}, {3}, {4, 5}, and so on. On the right is a dendrogram representation of the various clusterings; typically
these are drawn so that the height at which a clustering appears is proportional to its cost.
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Hierarchical clustering is attractive for obvious reasons. To make matters even better, there are several
simple agglomerative algorithms that can be used to construct them; we’ll get to these shortly. But are the
resulting clusterings any good? Or are they pretty arbitrary?

Let’s make this more concrete. Pick any cost function for k-clustering, such as the k-center cost. Is it
possible to construct a hierarchical clustering whose induced k-clustering is optimal for all k?

The answer is no. To see this, consider the following data set of six points. Below it are shown the
optimal 2-clustering and the optimal 3-clustering. These are not nested within each other; therefore they
are hierarchically incompatible.

4-1
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Is it possible to do a hierarchical clustering of a given dataset
such that for all k , the clustering corresponding to k is
optimal?
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Is it possible to do a hierarchical clustering of a given dataset
such that for all k , the clustering corresponding to k is optimal?
Is it possible to design approximation algorithms?
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Hierarchical Clustering
Approximation algorithm for k-center

Is it possible to design approximation algorithms?

We will see an 8-approximation algorithm for the k-center problem.

k-center problem

Let (X ,D) denote any metric space. Given S ⊂ X and an integer k,
find a set of k points T ⊂ X such that the following objective function
is minimized ΦT (S) = maxx∈S{mint∈T D(x ,T )}.

Recall, the Pick-farthest algorithm that we showed gives a
2-approximation.
Suppose we run the algorithm for n steps. That is, picking all the
n points. Let us number the points 1, 2, ..., n in the order that
they are picked.
Let Ri = mint∈{1,...,i−1}D(i , t).
Claim 1: For all k , Rk+1 ≤ 2 · OPTk , where OPTk denotes the
optimal k-center cost.
We will define a function π : {1, ..., n} → {1, ..., n} such that
∀i , π(i) ∈ {1, ..., i − 1}.
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π defines a tree Tπ.
Consider the k clustering given by the connected component of
Tπ when the edges 2→ π(2), 3→ π(3), ..., k → π(k) are deleted.
This gives a Hierarchical Clustering.
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Let Ri = mint∈{1,...,i−1}D(i , t).
Claim 1: For all k, Rk+1 ≤ 2 · OPTk , where OPTk denotes the
optimal k-center cost.
We will define a function π : {1, ..., n} → {1, ..., n} such that
∀i , π(i) ∈ {1, ..., i − 1}. Such a function exhibit the following nice
properties in the current context:

π defines a tree Tπ.
Consider the k clustering given by the connected component of
Tπ when the edges 2→ π(2), 3→ π(3), ..., k → π(k) are deleted.
This gives a Hierarchical Clustering.

Algorithm

- Number the data points by the Pick-farthest algorithm
- For i = 2, 3, ..., n: Ri ← mint∈{1,...,i−1}D(i , t)
- R ← R2; L0 ← {1}
- For j > 1: Lj ← {i : R/2j < Ri ≤ R/2j−1}
- For i = 1, ..., n: Let π(i)← closest point at a lower level.
- Output Tπ
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Algorithm

- Number the data points by the Pick-farthest algorithm
- For i = 2, 3, ..., n: Ri ← mint∈{1,...,i−1}D(i , t)
- R ← R2; L0 ← {1}
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The 8 approximation follows from the next two claims.
Claim 1: For any i , D(i , π(i)) ≤ R

2level(i)−1 , where level(i) denotes
index j such that i ∈ Lj .
Claim 2: For any k , the induced k-clustering has cost
≤ 4Rk+1 ≤ 8OPTk .
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Hierarchical Clustering

Hierarchical Clustering Algorithms fall into the following two
broad categories:

Divisive Algorithms: This is a top-down approach where one
starts with all points being in a single cluster and then
recursively dividing a cluster into more than one clusters.
Agglomerative Algorithms: This is a bottom-up approach
where one starts with n cluster (one each for every data point)
and then merge small clusters to construct larger clusters.

Agglomerative algorithms follow the following general
template:

Start with n clusters, each a single data point and then
repeatedly merge the two “closest” clusters.
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Agglomerative algorithms follow the following general template:

Start with n clusters, each a single data point and then repeatedly
merge the two “closest” clusters.

Following are the typical notions of closeness of two clusters that
are used in practice:

Single linkage: mini,j{D(i , j)|i ∈ C , j ∈ C ′}.
Complete linkage: maxi,j{D(i , j)|i ∈ C , j ∈ C ′}.
Average linkage:

mean{D(i , j)|i ∈ C , j ∈ C ′}.
||mean(C)−mean(C ′)||2.
|C |·|C ′|
|C |+|C”| · ||mean(C)−mean(C ′)||2 (Ward’s Method)

Theorem

For any C ,C ′ ⊂ Rd , we have

∆1(C ∪C ′) = ∆1(C ) + ∆1(C ′) +
|C | · |C ′|
|C |+ |C ′| · ||mean(C )−mean(C ′)||2.

Here ∆1(.) denotes the optimal 1-means cost.
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End
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