COL870: Clustering Algorithms

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

k-means++ seeding algorithm

- Pick the first centre c_1 uniformly at random from S
- For i = 2 to k

- Pick a point $x \in S$ to be the centre c_i with probability

$$\frac{\min_{j \in \{1, \dots, i-1\}} ||x - c_j||^2}{\sum_{i \in \mathcal{C}} \min_{i \in \{1, \dots, i-1\}} ||x - c_i||^2}$$

- Output
$$T = \{c_1, ..., c_k\}$$

Theorem (Arthur and Vassilvitskii 2007)

Let $\phi = \Phi(S, T)$ be the random variable denoting the cost of the solution produced by k-means++ and let ϕ_{OPT} denote the cost of the optimal solution. Then $E[\phi] \leq 8 \cdot (\ln k + 2) \cdot \phi_{OPT}$.

- For any set T ⊂ S of centers and any point x ∈ S, let D(x, T) = min_{t∈T} ||x − t||. We will just use D(x) when T is clear from the context.
- Let C_{OPT} denote the optimal clustering.

< □ > < 同 >

4 3 5 4 3 5

Theorem (Arthur and Vassilvitskii 2007)

Let $\phi = \Phi(S, T)$ be the random variable denoting the cost of the solution produced by k-means++ and let ϕ_{OPT} denote the cost of the optimal solution. Then $E[\phi] \leq 8 \cdot (\ln k + 2) \cdot \phi_{OPT}$.

- For any set T ⊂ S of centers and any point x ∈ S, let
 D(x, T) = min_{t∈T} ||x − t||. We will just use D(x) when T is
 clear from the context.
- Let C_{OPT} denote the optimal *k*-means clustering of *S*.
- <u>Claim 1</u>: Let A be an arbitrary cluster in C_{OPT} . Let c be a randomly chosen point from A. Then $E[\Phi(A, \{c\})] = 2 \cdot \Phi(A, centroid(A)).$

Theorem (Arthur and Vassilvitskii 2007)

Let $\phi = \Phi(S, T)$ be the random variable denoting the cost of the solution produced by k-means++ and let ϕ_{OPT} denote the cost of the optimal solution. Then $E[\phi] \leq 8 \cdot (\ln k + 2) \cdot \phi_{OPT}$.

- For any set T ⊂ S of centers and any point x ∈ S, let
 D(x, T) = min_{t∈T} ||x − t||. We will just use D(x) when T is
 clear from the context.
- Let C_{OPT} denote the optimal *k*-means clustering of *S*.
- <u>Claim 1</u>: Let A be an arbitrary cluster in C_{OPT} . Let c be a randomly chosen point from A. Then $E[\Phi(A, \{c\})] = 2 \cdot \Phi(A, centroid(A)).$
- <u>Claim 2</u>: Let A be an arbitrary cluster in C_{OPT} and let T be an arbitrary set of centers. Let t denote a point chosen from A using D^2 sampling. That is, for any $a \in A$, $\Pr[t = a] = \frac{D(a,T)}{\sum_{x \in A} D(x,T)}$. Then $\mathbb{E}[\Phi(A, T \cup \{t\})] \leq 8 \cdot \Phi(A, centroid(A))$.

Theorem (Arthur and Vassilvitskii 2007)

Let $\phi = \Phi(S, T)$ be the random variable denoting the cost of the solution produced by k-means++ and let ϕ_{OPT} denote the cost of the optimal solution. Then $E[\phi] \leq 8 \cdot (\ln k + 2) \cdot \phi_{OPT}$.

- For any set T ⊂ S of centers and any point x ∈ S, let D(x, T) = min_{t∈T} ||x − t||. We will just use D(x) when T is clear from the context.
- Let C_{OPT} denote the optimal k-means clustering of S.
- Claim 1: Let A be an arbitrary cluster in C_{OPT} . Let c be a randomly chosen point from A. Then $E[\Phi(A, \{c\})] = 2 \cdot \Phi(A, centroid(A))$.
- <u>Claim 2</u>: Let A be an arbitrary cluster in C_{OPT} and let T be an arbitrary set of centers. Let t denote a point chosen from A using D^2 sampling. That is, for any $a \in A$, $\Pr[t = a] = \frac{D(a, T)}{\sum_{x \in A} D(x, T)}$. Then

 $\mathbf{E}[\Phi(A, T \cup \{t\})] \leq 8 \cdot \Phi(A, centroid(A)).$

- For any set of centers *T* ⊂ *S*, a cluster *A* ∈ *C*_{OPT} is said to be "uncovered" if *A* ∩ *T* = Ø. A cluster that is not uncovered is called covered.
- For any subset X = {S_{i1}, S_{i2}, ..., S_{ii}} of optimal clusters Φ_{OPT}(X) denotes the cost of these clusters in the optimal clustering. That is Φ_{OPT}(X) = ∑_{j∈[l]} Φ(S_{ij}, centroid(S_{ij})).

・ロト ・回ト ・ヨト ・ヨト

Theorem (Arthur and Vassilvitskii 2007)

Let $\phi = \Phi(S, T)$ be the random variable denoting the cost of the solution produced by k-means++ and let ϕ_{OPT} denote the cost of the optimal solution. Then $E[\phi] \leq 8 \cdot (\ln k + 2) \cdot \phi_{OPT}$.

- For any set T ⊂ S of centers and any point x ∈ S, let D(x, T) = min_{t∈T} ||x − t||. We will just use D(x) when T is clear from the context.
- Let C_{OPT} denote the optimal k-means clustering of S.
- Claim 1: Let A be an arbitrary cluster in C_{OPT}. Let c be a randomly chosen point from A. Then E[Φ(A, {c})] = 2 · Φ(A, centroid(A)).
- Glaim 2: Let A be an arbitrary cluster in C_{OP7} and let T be an arbitrary set of centers. Let t denote a point chosen from A using D² sampling. That is, for any a ∈ A, Pr[t = a] = <u>De(a,T)</u>. Then

 $E[\Phi(A, T \cup \{t\})] \le 8 \cdot \Phi(A, centroid(A)).$

- For any set of centers T ⊂ S, a cluster A ∈ C_{OPT} is said to be "uncovered" if A ∩ T = Ø. A cluster that is not uncovered is called covered.
- For any subset $X = \{S_{i_1}, S_{i_2}, ..., S_{i_j}\}$ of optimal clusters $\Phi_{OPT}(X)$ denotes the cost of these clusters in the optimal clustering. That is $\Phi_{OPT}(X) = \sum_{j \in [I]} \Phi(S_{i_j}, centroid(S_{i_j})).$
- Claim 3: Let *T* be any arbitrary set of centers. Let *u* be the number of clusters in C_{OPT} that are uncovered (w.r.t. *T*). Let S_u denote the set of points in these uncovered clusters and $S_c = S \setminus S_u$. Suppose we now add $t \le u$ centers to *T* chosen with D^2 sampling. Let ϕ denote the cost w.r.t. *T* and ϕ' denote the cost w.r.t. *T* plus the newly added centers. Then $\mathbf{E}[\phi'] \le (\phi(S_c) + 8 \cdot \phi_{OPT}(S_u)) \cdot (1 + H_t) + \frac{u-t}{u} \cdot \phi(S_u)$. Here H_t denotes the Harmonic sum $H_t = 1 + 1/2 + 1/3 + ... + 1/t$.

End

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

イロン イロン イヨン イヨン

æ

990