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Approximation Algorithms
A pseudo-approximation algorithm for k-median

Let OPT denote the optimal value for the k-median problem and
OPTLP denote the optimal value for the relaxed LP.
Claim 1: OPTLP ≤ OPT .
Let rj =

∑
i xij · D(i , j). This may be interpreted as the

contribution of the j th point to the cost function.
Claim 2:

∑
j∈S rj = OPTLP

Let B(j , r) denote the subset of all points that have distance at
most r from point j .
Let Vj = {j ′ ∈ S |B(j , 2rj) ∩ B(j ′, 2r ′j ) 6= ∅}

Algorithm

- T ← {}
- while S 6= {}

- pick the j ∈ S with smallest rj
- T ← T ∪ {j}
- S ← S \ Vj

Claim 3: Φ(T ) ≤ 4 · OPTLP ≤ 4 · OPT .
Claim 4: |T | ≤ 2k .

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms



Approximation Algorithms
Pseudo-approximation algorithms

Pseudo/bi-criteria-approximation algorithm

What is the use of a pseudo-approximation algorithm for
k-median/means?

Let (X ,D) denote any metric space.

For any S ⊂ X , let Ψk(S , S) denote the cost of the optimal
k-median solution when the centers are allowed to be chosen
from S .

Claim 1: For any S ,Q ⊂ X , Ψk(S ,S) ≤ 2 ·Ψk(S ,Q).

Let S ⊂ X and S1, ...,Sm denote an arbitrary partition of S
into m subsets.

Claim 2:
∑

i Ψk(Si , Si ) ≤ 2 ·Ψk(S , S).
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Approximation Algorithms
Pseudo-approximation algorithms

Let (X ,D) denote any metric space.
For any S ⊂ X , let Ψk(S , S) denote the cost of the optimal
k-median solution when the centers are allowed to be chosen
from S .
Claim 1: For any S ,Q ⊂ X , Ψk(S ,S) ≤ 2 ·Ψk(S ,Q).
Let S ⊂ X and S1, ...,Sm denote an arbitrary partition of S into
m subsets.
Claim 2:

∑
i Ψk(Si , Si ) ≤ 2 ·Ψk(S , S).

Let Ci = {ci ,1, ci ,2, ..., ci ,k ′} ⊂ Si and let wi ,j denote the number
of points in Si for which the closest centre in the set Ci is ci ,j .
Let P =

∑m
i=1 Φ(Si ,Ci ) =

∑
i

∑
x∈Si minc∈Ci

D(x , c).
Let c∗1 , c

∗
2 , ..., c

∗
k be the optimal centers w.r.t. the discrete

k-median problem over S . Let P∗ = Ψk(S ,S).
Let S ′ denote a problem instance consisting of the “location”
∪iCi and each location ci ,j has wi ,j points.
Claim 3: Ψk(S ′,S ′) ≤ 2 · (P + P∗).
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Approximation Algorithms
Pseudo-approximation algorithms

Definition: An (a, b) pseudo-approximation algorithm for the
k-median problem outputs at most a · k centers such that the
cost of this solution is at most b times the cost of the optimal
k-median solution.
Suppose we have a (a, b) pseudo-approximation algorithm A and
a c-approximation algorithm B. Consider the following
approximation algorithm:

An algorithm for k-median

- Input: (S , k)
- Partition S into m equal size sets S1, ...,Sm
- For each i ∈ [m]: Run A(Si , k) to obtain centers Ci

- Compute the “weights” wi ,j for the centre locations ci ,j and consider
the instance S ′

- Run B(S ′, k) and let C be the centers obtained
- Output C
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Approximation Algorithms
Pseudo-approximation algorithms

Definition: An (a, b) pseudo-approximation algorithm for the
k-median problem outputs at most a · k centers such that the
cost of this solution is at most b times the cost of the optimal
k-median solution.
Suppose we have a (a, b) pseudo-approximation algorithm A and
a c-approximation algorithm B. Consider the following
approximation algorithm:

An algorithm for k-median

- Input: (S , k)
- Partition S into m equal size sets S1, ...,Sm
- For each i ∈ [m]: Run A(Si , k) to obtain centers Ci

- Compute the “weights” wi ,j for the centre locations ci ,j and consider
the instance S ′

- Run B(S ′, k) and let C be the centers obtained
- Output C

Theorem

The above algorithm gives an approximation factor of 2c(1 + 2b) + 2b.
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Approximation Algorithms
k-median/means

How do we solve k-median (in metric space) approximately?
First Idea: Try writing a Linear Program (LP) relaxation for
the discrete version of the problem and round.
Second Idea: Try a local search heuristic for the discrete
version of the problem.
Third Idea: Try simple sampling based approaches.

We will analyse an algorithm for the k-means problem in the
Euclidean setting which may be very easily generalised for
many different settings.

k-means++ seeding algorithm

- Pick the first centre c1 uniformly at random from S
- For i = 2 to k

- Pick a point x ∈ S to be the centre ci with probability
minj∈{1,...,i−1} ||x−cj ||2∑
x∈S minj∈{1,...,i−1} ||x−cj ||2

- Output T = {c1, ..., ck}
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k-median/means

How do we solve k-median (in metric space) approximately?

First Idea: Try writing a Linear Program (LP) relaxation for the
discrete version of the problem and round.
Second Idea: Try a local search heuristic for the discrete version of
the problem.
Third Idea: Try simple sampling based approaches.

We will analyse an algorithm for the k-means problem in the
Euclidean setting which may be very easily generalised for many
different settings.

k-means++ seeding algorithm

- Pick the first centre c1 uniformly at random from S
- For i = 2 to k

- Pick a point x ∈ S to be the centre ci with probability
minj∈{1,...,i−1} ||x−cj ||2∑
x∈S minj∈{1,...,i−1} ||x−cj ||2

- Output T = {c1, ..., ck}

Theorem (Arthur and Vassilvitskii 2007)

Let φ = Φ(S ,T ) be the random variable denoting the cost of the
solution produced by k-means++ and let φOPT denote the cost of the
optimal solution. Then E [φ] ≤ 8 · (ln k + 2) · φOPT .
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Approximation Algorithms
k-median/means

k-means++ seeding algorithm

- Pick the first centre c1 uniformly at random from S
- For i = 2 to k

- Pick a point x ∈ S to be the centre ci with probability
minj∈{1,...,i−1} ||x−cj ||2∑
x∈S minj∈{1,...,i−1} ||x−cj ||2

- Output T = {c1, ..., ck}

Theorem (Arthur and Vassilvitskii 2007)

Let φ = Φ(S ,T ) be the random variable denoting the cost of the
solution produced by k-means++ and let φOPT denote the cost of the
optimal solution. Then E [φ] ≤ 8 · (ln k + 2) · φOPT .

For any set T ⊂ S of centers and any point x ∈ S , let
D(x ,T ) = mint∈T ||x − t||. We will just use D(x) when T is
clear from the context.
Let COPT denote the optimal clustering.
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Approximation Algorithms
k-median/means

Theorem (Arthur and Vassilvitskii 2007)

Let φ = Φ(S ,T ) be the random variable denoting the cost of the
solution produced by k-means++ and let φOPT denote the cost of the
optimal solution. Then E [φ] ≤ 8 · (ln k + 2) · φOPT .

For any set T ⊂ S of centers and any point x ∈ S , let
D(x ,T ) = mint∈T ||x − t||. We will just use D(x) when T is
clear from the context.
Let COPT denote the optimal k-means clustering of S .
Claim 1: Let A be an arbitrary cluster in COPT . Let c be a
randomly chosen point from A. Then
E [Φ(A, {c})] = 2 · Φ(A, centroid(A)).
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Theorem (Arthur and Vassilvitskii 2007)

Let φ = Φ(S ,T ) be the random variable denoting the cost of the
solution produced by k-means++ and let φOPT denote the cost of the
optimal solution. Then E [φ] ≤ 8 · (ln k + 2) · φOPT .

For any set T ⊂ S of centers and any point x ∈ S , let
D(x ,T ) = mint∈T ||x − t||. We will just use D(x) when T is
clear from the context.
Let COPT denote the optimal k-means clustering of S .
Claim 1: Let A be an arbitrary cluster in COPT . Let c be a
randomly chosen point from A. Then
E [Φ(A, {c})] = 2 · Φ(A, centroid(A)).
Claim 2: Let A be an arbitrary cluster in COPT and let T be an
arbitrary set of centers. Let t denote a point chosen from A using
D2 sampling. That is, for any a ∈ A, Pr[t = a] = D(a,T )∑

x∈A D(x ,T ) .

Then E[Φ(A,T ∪ {t})] ≤ 8 · Φ(A, centroid(A)).
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