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Approximation Algorithms

A pseudo-approximation algorithm for k-median

o Let OPT denote the optimal value for the k-median problem and
OPT,p denote the optimal value for the relaxed LP.

o Claim 1: OPT;p < OPT.

o Let rj =", xj - D(i,j). This may be interpreted as the
contribution of the jt point to the cost function.

o Claim2: 3, srj = OPT.p

o Let B(j, r) denote the subset of all points that have distance at
most r from point j.

o Let V; = {j' € S|B(j,2r;) N B(j',2r]) # 0}

Algorithm

-T+{}

- while S # {}
- pick the j € S with smallest r;
- T+ TU{}
-5<S\V;

o Claim 3: &(T)<4-OPT.;p<4-OPT.
o Claim 4: |T| < 2k.
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Approximation Algorithms
Pseudo-approximation algorithms

Pseudo/bi-criteria-approximation algorithm

What is the use of a pseudo-approximation algorithm for
k-median/means?

(]

Let (X, D) denote any metric space.

Forany S C X, let W (S, S) denote the cost of the optimal

k-median solution when the centers are allowed to be chosen
from S.

Claim 1: Forany S, Q C X, W,(S,S) <2-V,(S,Q).

Let S C X and S1, ..., S, denote an arbitrary partition of S

into m subsets.

Claim 2: Z,- \Ifk(S,-, 5,) < 2- \Uk(S,S)

(]

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms



Approximation Algorithms
Pseudo-approximation algorithms

e Let (X, D) denote any metric space.

o Forany S C X, let W,(S5,S) denote the cost of the optimal
k-median solution when the centers are allowed to be chosen
from S.

e Claim 1: Forany S, Q C X, W,(S5,5) <2-W,(S,Q).

o Let S C X and Sy, ..., 5, denote an arbitrary partition of S into
m subsets.

o Claim 2: Zi \Uk(S;, S,) <2 \Uk(S, 5)

o Let G; ={ci1,¢i2,....,Ciw} CSiand let w;; denote the number
of points in S; for which the closest centre in the set C; is ¢; ;.

o Let P=3",0(5,C) =203 s Mincec; D(x, c).

o Let ¢f,c5, ..., c; be the optimal centers w.r.t. the discrete
k-median problem over S. Let P* = W,(S,S).

o Let S’ denote a problem instance consisting of the “location”
U;C; and each location ¢;; has w; ; points.

o Claim 3: W, (5,8') <2-(P+ P*).
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Approximation Algorithms

Pseudo-approximation algorithms

o Definition: An (a, b) pseudo-approximation algorithm for the
k-median problem outputs at most a - k centers such that the
cost of this solution is at most b times the cost of the optimal
k-median solution.

@ Suppose we have a (a, b) pseudo-approximation algorithm A and
a c-approximation algorithm B. Consider the following
approximation algorithm:

- Input: (S, k)

- Partition S into m equal size sets Sy, ..., S,

- For each i € [m]: Run A(S;, k) to obtain centers C;

- Compute the “weights” w;; for the centre locations ¢;; and consider
the instance S’

- Run B(S', k) and let C be the centers obtained

- Output C
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Approximation Algorithms

Pseudo-approximation algorithms

o Definition: An (a, b) pseudo-approximation algorithm for the
k-median problem outputs at most a - k centers such that the
cost of this solution is at most b times the cost of the optimal
k-median solution.

@ Suppose we have a (a, b) pseudo-approximation algorithm A and
a c-approximation algorithm B. Consider the following
approximation algorithm:

- Input: (S, k)

- Partition S into m equal size sets S1, ..., Sm

- For each i € [m]: Run A(S;, k) to obtain centers C;

- Compute the “weights” w;; for the centre locations ¢;; and consider
the instance S’

- Run B(S', k) and let C be the centers obtained

- Output C

The above algorithm gives an approximation factor of 2c(1 + 2b) + 2b.
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Approximation Algorithms

k-median/means

@ How do we solve k-median (in metric space) approximately?
o First Idea: Try writing a Linear Program (LP) relaxation for
the discrete version of the problem and round.
o Second Idea: Try a local search heuristic for the discrete
version of the problem.
o Third ldea: Try simple sampling based approaches.
o We will analyse an algorithm for the k-means problem in the
Euclidean setting which may be very easily generalised for
many different settings.

k-means—++ seeding algorithm

- Pick the first centre ¢; uniformly at random from S
- Fori=2to k
- Pick a point x € S to be the centre ¢; with probability
minje (1 . i—1} HX_CJH2
D oxes minje 1 i—1} [[x—c;l[?
- Output T ={c1, ..., ck}
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Approximation Algorithms

k-median/means

o How do we solve k-median (in metric space) approximately?
o First Idea: Try writing a Linear Program (LP) relaxation for the
discrete version of the problem and round.
o Second Idea: Try a local search heuristic for the discrete version of
the problem.
o Third Idea: Try simple sampling based approaches.
o We will analyse an algorithm for the k-means problem in the
Euclidean setting which may be very easily generalised for many
different settings.

k-means++ seeding algorithm

- Pick the first centre ¢; uniformly at random from S
-Fori=2to k
- Pick a point x € S to be the centre ¢; with probability
min;eq1,..im1y |Ix—gl?
Exes mi"je{l ..... i—1} HX*C/Hz

- Output T ={c1, ..., ck}

Theorem (Arthur and Vassilvitskii 2007)

Let ¢ = ®(S, T) be the random variable denoting the cost of the
solution produced by k-means++ and let popT denote the cost of the
optimal solution. Then E[¢] < 8- (Ink +2) - popT.

D
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Approximation Algorithms

k-median/means

k-means++ seeding algorithm

- Pick the first centre ¢; uniformly at random from S
-Fori=2to k

- Pick a point x € S to be the centre ¢; with probability
min;c1. -1y Ix—=gl?
> oves Minjeqr ic1y [Ix—gl?

- Output T ={ac1, ..., ck}

y

Theorem (Arthur and Vassilvitskii 2007)

Let ¢ = ®(S, T) be the random variable denoting the cost of the
solution produced by k-means++ and let popT denote the cost of the
optimal solution. Then E[¢p] < 8- (Ink + 2) - popT.

y

@ For any set T C S of centers and any point x € S, let
D(x, T) = minget ||x — t]|. We will just use D(x) when T is
clear from the context.

o Let Copr denote the optimal clustering.
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Approximation Algorithms
k-median/means

Theorem (Arthur and Vassilvitskii 2007)

Let ¢ = ®(S, T) be the random variable denoting the cost of the
solution produced by k-means++ and let ¢opT denote the cost of the
optimal solution. Then E[¢] <8 (Ink +2) - ¢opT.

@ For any set T C S of centers and any point x € S, let
D(x, T) = mingeT ||x — t||. We will just use D(x) when T is
clear from the context.

o Let Copr denote the optimal k-means clustering of S.

o Claim 1: Let A be an arbitrary cluster in Copt. Let ¢ be a
randomly chosen point from A. Then
E[®(A,{c})] =2 ®(A, centroid(A)).
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Approximation Algorithms
k-median/means

Theorem (Arthur and Vassilvitskii 2007)

Let ¢ = ®(S, T) be the random variable denoting the cost of the
solution produced by k-means++ and let popt denote the cost of the
optimal solution. Then E[¢] < 8- (Ink +2) - ¢opT.

o For any set T C S of centers and any point x € S, let
D(x, T) = minget ||x — t|]. We will just use D(x) when T is
clear from the context.

o Let Copr denote the optimal k-means clustering of S.

@ Claim 1: Let A be an arbitrary cluster in Copt. Let ¢ be a
randomly chosen point from A. Then
E[®(A,{c})] = 2 P(A, centroid(A)).

@ Claim 2: Let A be an arbitrary cluster in Copt and let T be an
arbitrary set of centers. Let t denote a point chosen from A using
D? sampling. That is, for any a € A, Pr[t = a] = %.

Then E[®(A, T U {t})] < 8- ®(A, centroid(A)).
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