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Approximation Algorithms
Local Search Heuristic for k-means

Claim 1: For any t ∈ T and o ∈ O, Φ(T − {t}+ {o})−Φ(T ) ≥ 0.
We will need the following definitions:

For any centre t ∈ T , let Ct denote the cluster corresponding to t.
For any centre o ∈ T , let Co denote the cluster corresponding to t.
For any point x ∈ S , tx denotes the closest center in T to x and
similarly ox denotes the closest centre to x in O.

Claim 2: Let (o, t) denote a swap-pair. Then for any x ∈ Ct , either
ox = o or tox 6= t.
Claim 3: For any swap pair (o, t), we have

0 ≤ Φ(T − {t}+ {o})− Φ(T ) =
∑
x∈Co

(d(x , o)2 − d(x , tx)2) +

∑
x∈Ct\Co

(d(x , tox )2 − d(x , t)2)

Claim 4: Let R =
∑

x∈S d(x , tox ). Then Φ(O)− 3Φ(T ) + 2R ≥ 0

Claim 5: R ≤ 2Φ(O) + Φ(T ) + 2
√

Φ(O)
√

Φ(T ).
Putting together claims 4 and 5 gives us the result.
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Approximation Algorithms
k-median/means

How do we solve k-median (in metric space) approximately?
First Idea: Try writing a Linear Program (LP) relaxation for
the discrete version of the problem and round.

A simple rounding idea gives a “pseudo-approximation”
algorithm.

Second Idea: Try a local search heuristic for the discrete
version of the problem.
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Approximation Algorithms
k-median/means

How do we solve k-median (in metric space) approximately?
First Idea: Try writing a Linear Program (LP) relaxation for
the discrete version of the problem and round.

A simple rounding idea gives a “pseudo-approximation”
algorithm.
A pseudo-approximation algorithm for the k-median problem
outputs more than k centers and the approximation factor is
computed w.r.t. the optimal solution with k centers.

Second Idea: Try a local search heuristic for the discrete
version of the problem.
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Approximation Algorithms
A pseudo-approximation algorithm for k-median

Recall the Linear Programming relaxation for k-median.

Minimize
∑

i ,j D(i , j) · xij ,
subject to :∑

i xij = 1 for each j
xij ≤ yi for each i , j∑

i yi ≤ k
0 ≤ xij ≤ 1 for each i , j
0 ≤ yi ≤ 1 for each i

Let OPT denote the optimal value for the k-median problem
and OPTLP denote the optimal value for the relaxed LP.

Claim 1: OPTLP ≤ OPT .
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Approximation Algorithms
A pseudo-approximation algorithm for k-median

Recall the Linear Programming relaxation for k-median.

Minimize
∑

i ,j D(i , j) · xij ,
subject to :∑

i xij = 1 for each j
xij ≤ yi for each i , j∑

i yi ≤ k
0 ≤ xij ≤ 1 for each i , j
0 ≤ yi ≤ 1 for each i

Let OPT denote the optimal value for the k-median problem
and OPTLP denote the optimal value for the relaxed LP.

Claim 1: OPTLP ≤ OPT .

Let rj =
∑

i xij · D(i , j). This may be interpreted as the
contribution of the j th point to the cost function.

Claim 2:
∑

j∈S rj = OPTLP
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Approximation Algorithms
A pseudo-approximation algorithm for k-median

Let OPT denote the optimal value for the k-median problem and
OPTLP denote the optimal value for the relaxed LP.
Claim 1: OPTLP ≤ OPT .
Let rj =

∑
i xij · D(i , j). This may be interpreted as the

contribution of the j th point to the cost function.
Claim 2:

∑
j∈S rj = OPTLP

Let B(j , r) denote the subset of all points that have distance at
most r from point j .
Let Vj = {j ′ ∈ S |B(j , 2rj) ∩ B(j ′, 2r ′j ) 6= ∅}

Algorithm

- T ← {}
- while S 6= {}

- pick the j ∈ S with smallest rj
- T ← T ∪ {j}
- S ← S \ Vj
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Approximation Algorithms
A pseudo-approximation algorithm for k-median

Let OPT denote the optimal value for the k-median problem and
OPTLP denote the optimal value for the relaxed LP.
Claim 1: OPTLP ≤ OPT .
Let rj =

∑
i xij · D(i , j). This may be interpreted as the

contribution of the j th point to the cost function.
Claim 2:

∑
j∈S rj = OPTLP

Let B(j , r) denote the subset of all points that have distance at
most r from point j .
Let Vj = {j ′ ∈ S |B(j , 2rj) ∩ B(j ′, 2r ′j ) 6= ∅}

Algorithm

- T ← {}
- while S 6= {}

- pick the j ∈ S with smallest rj
- T ← T ∪ {j}
- S ← S \ Vj

Claim 3: Φ(T ) ≤ 4 · OPTLP ≤ 4 · OPT .
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Approximation Algorithms
A pseudo-approximation algorithm for k-median

Let OPT denote the optimal value for the k-median problem and
OPTLP denote the optimal value for the relaxed LP.
Claim 1: OPTLP ≤ OPT .
Let rj =

∑
i xij · D(i , j). This may be interpreted as the

contribution of the j th point to the cost function.
Claim 2:

∑
j∈S rj = OPTLP

Let B(j , r) denote the subset of all points that have distance at
most r from point j .
Let Vj = {j ′ ∈ S |B(j , 2rj) ∩ B(j ′, 2r ′j ) 6= ∅}

Algorithm

- T ← {}
- while S 6= {}

- pick the j ∈ S with smallest rj
- T ← T ∪ {j}
- S ← S \ Vj

Claim 3: Φ(T ) ≤ 4 · OPTLP ≤ 4 · OPT .
Claim 4: |T | ≤ 2k .
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Approximation Algorithms
Pseudo-approximation algorithms

Pseudo/bi-criteria-approximation algorithm

What is the use of a pseudo-approximation algorithm for
k-median/means?

Let (X ,D) denote any metric space.

For any S ⊂ X , let Ψk(S , S) denote the cost of the optimal
k-median solution when the centers are allowed to be chosen
from S .

Claim 1: For any S ,Q ⊂ X , Ψk(S ,S) ≤ 2 ·Ψk(S ,Q).

Let S ⊂ X and S1, ...,Sm denote an arbitrary partition of S
into m subsets.

Claim 2:
∑

i Ψk(Si , Si ) ≤ 2 ·Ψk(S , S).
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End
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