COL870: Clustering Algorithms

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

Approximation Algorithms Local Search Heuristic for *k*-means

- Claim 1: For any $t \in T$ and $o \in O$, $\Phi(T \{t\} + \{o\}) \Phi(T) \ge 0$.
- We will need the following definitions:
 - For any centre $t \in T$, let C_t denote the cluster corresponding to t.
 - For any centre $o \in T$, let C_o denote the cluster corresponding to t.
 - For any point x ∈ S, t_x denotes the closest center in T to x and similarly o_x denotes the closest centre to x in O.
- <u>Claim 2</u>: Let (o, t) denote a swap-pair. Then for any $x \in C_t$, either $o_x = o$ or $t_{o_x} \neq t$.
- Claim 3: For any swap pair (o, t), we have

$$0 \leq \Phi(T - \{t\} + \{o\}) - \Phi(T) = \sum_{x \in C_o} (d(x, o)^2 - d(x, t_x)^2) + \sum_{x \in C_t \setminus C_o} (d(x, t_{o_x})^2 - d(x, t)^2)$$

- Claim 4: Let $R = \sum_{x \in S} d(x, t_{o_x})$. Then $\Phi(O) 3\Phi(T) + 2R \ge 0$
- Claim 5: $R \leq 2\Phi(O) + \Phi(T) + 2\sqrt{\Phi(O)}\sqrt{\Phi(T)}$.
- Putting together claims 4 and 5 gives us the result.

- How do we solve k-median (in metric space) approximately?
 - <u>First Idea</u>: Try writing a Linear Program (LP) relaxation for the discrete version of the problem and round.
 - A simple rounding idea gives a "pseudo-approximation" algorithm.
 - <u>Second Idea</u>: Try a local search heuristic for the discrete version of the problem.

- How do we solve k-median (in metric space) approximately?
 - <u>First Idea</u>: Try writing a Linear Program (LP) relaxation for the discrete version of the problem and round.
 - A simple rounding idea gives a "pseudo-approximation" algorithm.
 - A pseudo-approximation algorithm for the *k*-median problem outputs more than *k* centers and the approximation factor is computed w.r.t. the optimal solution with *k* centers.
 - <u>Second Idea</u>: Try a local search heuristic for the discrete version of the problem.

• Recall the Linear Programming relaxation for *k*-median.

$$\begin{array}{l} \text{Minimize } \sum_{i,j} D(i,j) \cdot x_{ij}, \\ \text{subject to :} \\ \sum_i x_{ij} = 1 \quad \text{for each } j \\ x_{ij} \leq y_i \quad \text{for each } i, j \\ \sum_i y_i \leq k \\ 0 \leq x_{ij} \leq 1 \quad \text{for each } i, j \\ 0 \leq y_i \leq 1 \quad \text{for each } i \end{array}$$

- Let *OPT* denote the optimal value for the *k*-median problem and *OPT_{LP}* denote the optimal value for the relaxed LP.
- <u>Claim 1</u>: $OPT_{LP} \leq OPT$.

• Recall the Linear Programming relaxation for *k*-median.

$$\begin{array}{l} \text{Minimize } \sum_{i,j} D(i,j) \cdot x_{ij}, \\ \text{subject to :} \\ \sum_i x_{ij} = 1 \quad \text{for each } j \\ x_{ij} \leq y_i \quad \text{for each } i, j \\ \sum_i y_i \leq k \\ 0 \leq x_{ij} \leq 1 \quad \text{for each } i, j \\ 0 \leq y_i \leq 1 \quad \text{for each } i \end{array}$$

- Let *OPT* denote the optimal value for the *k*-median problem and *OPT*_{*LP*} denote the optimal value for the relaxed LP.
- <u>Claim 1</u>: $OPT_{LP} \leq OPT$.
- Let $r_j = \sum_i x_{ij} \cdot D(i, j)$. This may be interpreted as the contribution of the j^{th} point to the cost function.

• Claim 2:
$$\sum_{j \in S} r_j = OPT_{LP}$$

• Let *OPT* denote the optimal value for the *k*-median problem and *OPT_{LP}* denote the optimal value for the relaxed LP.

• Claim 1:
$$OPT_{LP} \leq OPT$$
.

• Let $r_j = \sum_i x_{ij} \cdot D(i, j)$. This may be interpreted as the contribution of the j^{th} point to the cost function.

• Claim 2:
$$\sum_{j \in S} r_j = OPT_{LP}$$

- Let B(j, r) denote the subset of all points that have distance at most r from point j.
- Let $V_j = \{j' \in S | B(j, 2r_j) \cap B(j', 2r'_j) \neq \emptyset\}$

Algorithm

- $T \leftarrow \{\}$
- while $S \neq \{\}$
 - pick the $j \in S$ with smallest r_j

-
$$T \leftarrow T \cup \{j\}$$

$$-S \leftarrow S \setminus V_j$$

- Let *OPT* denote the optimal value for the *k*-median problem and *OPT_{LP}* denote the optimal value for the relaxed LP.
- <u>Claim 1</u>: $OPT_{LP} \leq OPT$.
- Let $r_j = \sum_i x_{ij} \cdot D(i, j)$. This may be interpreted as the contribution of the j^{th} point to the cost function.

• Claim 2:
$$\sum_{j \in S} r_j = OPT_{LP}$$

 Let B(j, r) denote the subset of all points that have distance at most r from point j.

• Let
$$V_j = \{j' \in S | B(j, 2r_j) \cap B(j', 2r'_j) \neq \emptyset\}$$

Algorithm

- $T \leftarrow \{\}$
- while $S \neq \{\}$
 - pick the $j \in S$ with smallest r_j
 - $T \leftarrow T \cup \{j\}$
 - $S \leftarrow S \setminus V_j$

• Claim 3: $\Phi(T) \leq 4 \cdot OPT_{LP} \leq 4 \cdot OPT$.

- Let *OPT* denote the optimal value for the *k*-median problem and *OPT*_{LP} denote the optimal value for the relaxed LP.
- <u>Claim 1</u>: $OPT_{LP} \leq OPT$.
- Let r_j = ∑_i x_{ij} · D(i, j). This may be interpreted as the contribution of the jth point to the cost function.

• Claim 2:
$$\sum_{j \in S} r_j = OPT_{LP}$$

- Let B(j, r) denote the subset of all points that have distance at most r from point j.
- Let $V_j = \{j' \in S | B(j, 2r_j) \cap B(j', 2r'_j) \neq \emptyset\}$

Algorithm

- $T \leftarrow \{\}$
- while $S \neq \{\}$
 - pick the $j \in S$ with smallest r_i
 - $T \leftarrow T \cup \{j\}$
 - $S \leftarrow S \setminus V_j$
 - Claim 3: $\Phi(T) \leq 4 \cdot OPT_{LP} \leq 4 \cdot OPT$.
 - <u>Claim 4</u>: $|T| \leq 2k$.

• = • • = •

Pseudo/bi-criteria-approximation algorithm

What is the use of a pseudo-approximation algorithm for k-median/means?

- Let (X, D) denote any metric space.
- For any S ⊂ X, let Ψ_k(S, S) denote the cost of the optimal k-median solution when the centers are allowed to be chosen from S.
- <u>Claim 1</u>: For any $S, Q \subset X$, $\Psi_k(S, S) \leq 2 \cdot \Psi_k(S, Q)$.
- Let S ⊂ X and S₁, ..., S_m denote an arbitrary partition of S into m subsets.
- <u>Claim 2</u>: $\sum_{i} \Psi_k(S_i, S_i) \leq 2 \cdot \Psi_k(S, S)$.

End

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

イロン イロン イヨン イヨン

æ

990