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Approximation Algorithms
Local Search Heuristic for k-means

Claim 1: Forany t € T and o € O, ®(T — {t} +{o}) —®(T) > 0.
We will need the following definitions:
o For any centre t € T, let C; denote the cluster corresponding to t.
o For any centre 0 € T, let C, denote the cluster corresponding to t.
o For any point x € S, t, denotes the closest center in T to x and
similarly o, denotes the closest centre to x in O.

Claim 2: Let (o, t) denote a swap-pair. Then for any x € C;, either
Ox =0 or ty, #t.
Claim 3: For any swap pair (o, t), we have

0<O(T—{t}+{o}) = (T) = > (d(x,0)0 —d(x,t)?) +
x€Co

Z (d(x, tOx)2 —d(x, t)z)

XGC:\CO

(]

Claim 4: Let R =) .sd(x,t,). Then ®(0) —3®(T) +2R >0
Claim 5: R <2¢(0) + &(T) +2,/P(0)/O(T).

Putting together claims 4 and 5 gives us the result.

® o
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Approximation Algorithms
k-median/means

@ How do we solve k-median (in metric space) approximately?
o First Idea: Try writing a Linear Program (LP) relaxation for
the discrete version of the problem and round.
@ A simple rounding idea gives a “pseudo-approximation”
algorithm.
o Second Idea: Try a local search heuristic for the discrete
version of the problem.
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Approximation Algorithms

k-median/means

@ How do we solve k-median (in metric space) approximately?
o First Idea: Try writing a Linear Program (LP) relaxation for
the discrete version of the problem and round.

@ A simple rounding idea gives a “pseudo-approximation”
algorithm.

@ A pseudo-approximation algorithm for the k-median problem
outputs more than k centers and the approximation factor is
computed w.r.t. the optimal solution with k centers.

o Second Idea: Try a local search heuristic for the discrete
version of the problem.
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Approximation Algorithms

A pseudo-approximation algorithm for k-median

@ Recall the Linear Programming relaxation for k-median.

Minimize }; ; D(i, ) - xj,
subject to :

>.;Xxj=1 foreach

xj <y foreachi,j
Yivilk

0<x; <1 foreachi,j
0<y; <1 foreachi

o Let OPT denote the optimal value for the k-median problem
and OPT,p denote the optimal value for the relaxed LP.

o Claim 1: OPT,;p < OPT.
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Approximation Algorithms

A pseudo-approximation algorithm for k-median

@ Recall the Linear Programming relaxation for k-median.

Minimize }; ; D(i,j) - xj,
subject to :

>.;Xxj=1 foreach

xj <y; foreachi,j
Zi)/i <k

0<x; <1 foreachi,j
0<y; <1 foreachi

@ Let OPT denote the optimal value for the k-median problem
and OPTp denote the optimal value for the relaxed LP.

o Claim 1: OPT.p < OPT.

o Let r; =) ;x;- D(i,j). This may be interpreted as the
contribution of the j point to the cost function.

o Claim 2; Zjes ri=OPT.p
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Approximation Algorithms

A pseudo-approximation algorithm for k-median

@ Let OPT denote the optimal value for the k-median problem and
OPT_p denote the optimal value for the relaxed LP.

o Claim 1: OPT, p < OPT.

o Letrj =), x;-D(i, _j) This may be interpreted as the
contribution of the jt point to the cost function.

o Claim 2: Zjesrj OPT,p

o Let B(j, r) denote the subset of all points that have distance at
most r from point j.

o Let V; = {j/ € S|B(j.25) N B(/.2r)) # 0}

Algorithm

-T+{}

- while S # {}
- pick the j € S with smallest r;
- T« TUu{j}
-S5<S\V
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Approximation Algorithms

A pseudo-approximation algorithm for k-median

o Let OPT denote the optimal value for the k-median problem and
OPT_p denote the optimal value for the relaxed LP.

o Claim 1: OPT,p < OPT.

o Let r; =), x;- D(i,j). This may be interpreted as the
contribution of the j point to the cost function.

o Claim 2: } . s r; = OPT.p

o Let B(j, r) denote the subset of all points that have distance at
most r from point j.

o Let V; ={j € S|B(j,2r;) N B(j’,2rj’) # 0}

Algorithm

-T+{}

- while S # {}
- pick the j € S with smallest r;
- T+ TU{j}
-5+ S5\V

o Claim 3: ®(T)<4-OPT;p <4-OPT.
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Approximation Algorithms

A pseudo-approximation algorithm for k-median

o Let OPT denote the optimal value for the k-median problem and
OPT,p denote the optimal value for the relaxed LP.

o Claim 1: OPT;p < OPT.

o Let rj =", xj - D(i,j). This may be interpreted as the
contribution of the jt point to the cost function.

o Claim2: 3, srj = OPT.p

o Let B(j, r) denote the subset of all points that have distance at
most r from point j.

o Let V; = {j' € S|B(j,2r;) N B(j',2r]) # 0}

Algorithm

-T+{}

- while S # {}
- pick the j € S with smallest r;
- T+ TU{}
-5<S\V;

o Claim 3: &(T)<4-OPT.;p<4-OPT.
o Claim 4: |T| < 2k.
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Approximation Algorithms
Pseudo-approximation algorithms

Pseudo/bi-criteria-approximation algorithm

What is the use of a pseudo-approximation algorithm for
k-median/means?

(]

Let (X, D) denote any metric space.

Forany S C X, let W (S, S) denote the cost of the optimal

k-median solution when the centers are allowed to be chosen
from S.

Claim 1: Forany S, Q C X, W,(S,S) <2-V,(S,Q).

Let S C X and S1, ..., S, denote an arbitrary partition of S

into m subsets.

Claim 2: Z,- \Ifk(S,-, 5,) < 2- \Uk(S,S)

(]
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End )
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