COL870: Clustering Algorithms

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

The k-means Problem

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

17 ▶

э

The k-means Problem

k-means

Given a set of points $S \subset \mathbb{R}^d$ in a *d* dimensional Euclidean space, and an integer *k*, output a set $T \subset \mathbb{R}^d$ of points (called *centers*) such that |T| = k and the following cost function is minimised:

$$cost(S,T) = \sum_{x \in S} \min_{z \in T} ||x - z||^2.$$

Figure : What is the solution for the 2-means problem for the above 2-D dataset?

$$cost(S,T) = \sum_{x \in S} \min_{z \in T} ||x - z||^2.$$

- How hard is the 1-means problem?
 - Given $x_1, ..., x_n \in \mathbb{R}^d$ find a point $z \in \mathbb{R}^d$ such that $f(z) = \sum_i ||x_i z||^2$ is minimized.

$$cost(S, T) = \sum_{x \in S} \min_{z \in T} ||x - z||^2.$$

- How hard is the 1-means problem?
 - Given x₁, ..., x_n ∈ ℝ^d find a point z ∈ ℝ^d such that f(z) = ∑_i ||x_i z||² is minimized.
 What is ∂f(z)/∂z_i?
 So, for what z, ∑_i ||x_i z||² gets minimized?

$$cost(S, T) = \sum_{x \in S} \min_{z \in T} ||x - z||^2.$$

- How hard is the 1-means problem?
 - Given x₁,..., x_n ∈ ℝ^d find a point z ∈ ℝ^d such that f(z) = ∑_i ||x_i z||² is minimized.
 What is ∂f(z) ? ∂f(z) / ∂z_i = nz_i ∑_j x_{ji}
 - So, for what z, ∑_i ||x_i − z||² gets minimized? z = ∑_ix_i/n
 ∑_ix_i/n is called the *centroid* of the points x₁,...,x_n.

Given a set of points $S \subset \mathbb{R}^d$ in a *d* dimensional Euclidean space, and an integer *k*, output a set $T \subset \mathbb{R}^d$ of points (called *centers*) such that |T| = k and the following cost function is minimised:

$$cost(S, T) = \sum_{x \in S} \min_{z \in T} ||x - z||^2.$$

• How hard is the k-means problem for k > 1 when d = 1? In other words, how hard is the 1-dimensional k-means problem?

$$cost(S, T) = \sum_{x \in S} \min_{z \in T} ||x - z||^2.$$

- How hard is the *k*-means problem for k > 1 when d = 1? In other words, how hard is the 1-dimensional *k*-means problem?
 - There is a simpler Dynamic Programming algorithms for this problem!

Given a set of points $S \subset \mathbb{R}^d$ in a *d* dimensional Euclidean space, and an integer *k*, output a set $T \subset \mathbb{R}^d$ of points (called *centers*) such that |T| = k and the following cost function is minimised:

$$cost(S,T) = \sum_{x \in S} \min_{z \in T} ||x - z||^2.$$

How hard is the k-means problem for k > 1 and d > 1?
NP-hard.

The k-means Problem

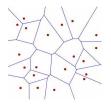
k-means

Given a set of points $S \subset \mathbb{R}^d$ in a *d* dimensional Euclidean space, and an integer *k*, output a set $T \subset \mathbb{R}^d$ of points (called *centers*) such that |T| = k and the following cost function is minimised:

$$cost(S,T) = \sum_{x \in S} \min_{z \in T} ||x - z||^2.$$

• How is this problem related to clustering?

- The k centers induce a voronoi partition of \mathbb{R}^d (and hence the given data points).
- The voronoi partition corresponding to a center *z* is the region of space whose nearest center (among the *k* centers) is *z*.



• The most popular heuristic that used to solve the *k*-means problem in practice is the *k*-means algorithm (also known as Lloyd's Algorithm).

k-means Algorithm

- Initialize centers $z_1, ..., z_k \in \mathbb{R}^d$.
- Repeat until there is no further change in cost:
 - For each $j: C_j \leftarrow \{x \in S | z_j \text{ is the closest center of } x\}.$
 - For each *j*: $z_j \leftarrow Centroid(C_j)$.

k-means Algorithm

- Initialize centers $z_1, ..., z_k \in \mathbb{R}^d$.
- Repeat until there is no further change in cost:
 - For each $j: C_j \leftarrow \{x \in S | z_j \text{ is the closest center of } x\}.$
 - For each $j: z_j \leftarrow Centroid(C_j)$.
 - <u>Claim 1</u>: For any dataset S, let \overline{C}_i denote the set of centers after the i^{th} iteration of the loop. Then for all i, $cost(S, \overline{C}_{i+1}) \leq cost(S, \overline{C}_i)$.

Lemma

For any set $S \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$,

$$cost(S, z) = cost(S, Centroid(S)) + |S| \cdot ||z - Centroid(S)||^2$$

▲□ ► < □ ► </p>

k-means Algorithm

- Initialize centers $z_1, ..., z_k \in \mathbb{R}^d$.
- Repeat until there is no further change in cost:
 - For each $j: C_j \leftarrow \{x \in S | z_j \text{ is the closest center of } x\}.$
 - For each *j*: $z_j \leftarrow Centroid(C_j)$.
 - <u>Claim 1</u>: For any dataset S, let \overline{C}_i denote the set of centers after the i^{th} iteration of the loop. Then for all i, $cost(S, \overline{C}_{i+1}) \leq cost(S, \overline{C}_i)$.
 - <u>Claim 2</u>: There exists datasets on which the *k*-means algorithm gives arbitrarily bad solutions.

End

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms

イロン イロン イヨン イヨン

æ

990