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Introduction

What is data clustering?

Given a representation of n objects, find k groups based on a
measure of similarity (dissimilarity) such that the similarities
between objects in the same group are high while similarities
between objects in different groups are low.

Suppose the given objects to be clustered can be represented
as points in two-dimensional space (i.e., R2).

What is a reasonable notion of similarity between objects?
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Introduction

What is data clustering?

Given a representation of n objects, find k groups based on a
measure of similarity (dissimilarity) such that the similarities
between objects in the same group are high while similarities
between objects in different groups are low.

Suppose the given objects to be clustered can be represented
as points in two-dimensional space (i.e., R2).

What is a reasonable notion of similarity between objects?
Distance between points.
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Introduction

What is data clustering?

Given a representation of n objects, find k groups based on a
measure of similarity (dissimilarity) such that the similarities
between objects in the same group are high while similarities
between objects in different groups are low.

Suppose the given objects to be clustered can be represented
as points in two-dimensional space (i.e., R2).

What is a reasonable notion of similarity between objects?
Distance between points.
The notion of similarity/dissimilarity has to be defined
carefully.
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Data Representation
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Data Representation

What is data clustering?

Given a representation of n objects, find k groups based on a
measure of similarity (dissimilarity) such that the similarities
between objects in the same group are high while similarities
between objects in different groups are low.

The “data” for cluster analysis can be described by two
standard formats:

Pattern Matrix
Proximity Matrix
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Data Representation

The “data” for cluster analysis can be described by two
standard formats:

Pattern Matrix

Data is represented as an n × d matrix where each row
corresponds to a “pattern/item/object” and each column
denotes a “feature/measurement”.
Example: For patient records in a hospital each row
corresponds to a patient and each column denotes a feature
such as age, weight, height, measurement for certain medical
tests etc.
The d features are usually visualised as a set of orthogonal
axes. Given this, the items then are points in a d-dimensional
space called pattern space.

Proximity Matrix
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Data Representation

The “data” for cluster analysis can be described by two
standard formats:

Pattern Matrix
Proximity Matrix

This is an n × n matrix where n denotes the number of
items/patterns. The entries in this matrix is called proximity
indices. The (i , j)th entry in this matrix denotes the proximity
between the i th and j th item.
Proximity could indicate similarity or dissimilarity. For example
for dissimilarity D(i , i) = 0 and for similarity
D(i , i) ≥ maxk D(i , k).
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Data Representation

The “data” for cluster analysis can be described by two
standard formats:

Pattern Matrix: n × d matrix denoting the data points.
Proximity Matrix: n× n matrix denoting the pairwise proximity
between data points.

How to interpret the numbers in the above matrices? The
numbers can be of the following nature

Nominal: The numbers are used as names. For example, a
yes/no response can be encoded as 0/1 or 500/1000 etc.
Ordinal: The numbers have meaning with respect to each
other. That is, column entries 1, 2, 3 is equivalent to the
column entries 1, 20, 300.
Ratio scale: The numbers have absolute meaning. For
example, distance between two cities, temperature etc.
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Data Representation

The “data” for cluster analysis can be described by two
standard formats:

Pattern Matrix: n × d matrix denoting the data points.
Proximity Matrix: n× n matrix denoting the pairwise proximity
between data points.

How to interpret the numbers in the above matrices? The
numbers can be of the following nature

Nominal:
Ordinal:
Ratio scale:

Can we obtain the proximity matrix from the pattern matrix?
The most common dissimilarity measure using the pattern
matrix (with ratio-scaled data) is the Minkowski metric which
is defined as follows: Let x denote the pattern matrix. Then
we have

D(i , k) =

 d∑
j=1

|x(i , j)− x(k , j)|r
1/r

where r ≥ 1
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Data Representation

Can we obtain the proximity matrix from the pattern matrix?

The most common dissimilarity measure using the pattern
matrix (with ratio-scaled data) is the Minkowski metric which
is defined as follows: Let x denote the pattern matrix. Then
we have

D(i , j) =

 d∑
j=1

|x(i , j)− x(k , j)|r
1/r

where r ≥ 1

Specific instances of Minkowski metric is given below:

Euclidean distance: r = 2
Manhattan distance: r = 1
Sup distance: r →∞. This means that
D(i , k) = max1≤j≤d |x(i , j)− x(k , j)|

The Euclidean distance is the most commonly used distance
measure in Engineering.
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Data Representation

Can we obtain the proximity matrix from the pattern matrix?

In a number of settings the pattern matrix contains binary
nominal values (i.e., 0/1 indicating yes/no)
In such cases the proximity index D(i , j) is calculated in the
following manner:

Let a00 = |{k : x(i , k) = 0 and x(j , k) = 0}|
Let a01 = |{k : x(i , k) = 0 and x(j , k) = 1}|
Let a10 = |{k : x(i , k) = 1 and x(j , k) = 0}|
Let a11 = |{k : x(i , k) = 1 and x(j , k) = 1}|

Simple Matching Coefficient: D(i , j) = a00+a11
a00+a11+a01+a10

Jaccard Coefficient: D(i , j) = a11
a11+a01+a10
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Data Representation

What can we do for “missing data”?

In a number of settings some data entries might be missing.
For example, missing medical test for some individual etc.
Missing data is handled in the following manner:

Delete the items or features that have missing entries.
Suppose the j th entry of the i th item is missing. Find the k
“nearest neighbours” of the i th item and replace the the
missing entry with the average value of the j th feature of these
nearest items.
Skip the missing features while calculating the distance
between pair of items.
Try computing the missing entries by assuming certain
reasonable properties of the pattern matrix.
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Data Representation

How do we normalize across different features?

Some features might be recorded using a larger range of
numbers (e.g. distance in inches) compared other features
(e.g., distance in miles). When calculating dissimilarity using
Minkowski metric, one feature might dominate the dissimilarity.
Here is the standard way to normalise the n× d pattern matrix
x . Let y denote the normalised matrix.

For all j , let mj = 1
n

∑n
i=1 xij

For all j , let s2j = 1
n

∑n
i=1(xij −mj)

2

yij =
xij−mj

sj

All features in y have 0 mean and unit variance.

Is such normalisation always desirable when used for clustering
purposes?

Can you think of an example?
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Data Representation

Can we reduce the dimensionality of the data?

Discussed later
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The k-means Problem
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The k-means Problem

k-means

Given a set of points S ⊂ Rd in a d dimensional Euclidean space,
and an integer k , output a set T ⊂ Rd of points (called centers)
such that |T | = k and the following cost function is minimised:

cost(S ,T ) =
∑
x∈S

min
z∈T
||x − z ||2.

Figure : What is the solution for the 2-means problem for the above 2-D
dataset?
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The k-means Problem

k-means

Given a set of points S ⊂ Rd in a d dimensional Euclidean space,
and an integer k , output a set T ⊂ Rd of points (called centers)
such that |T | = k and the following cost function is minimised:

cost(S ,T ) =
∑
x∈S

min
z∈T
||x − z ||2.

How hard is the 1-means problem?

Given x1, ..., xn ∈ Rd find a point z ∈ Rd such that
f (z) =

∑
i ||xi − z ||2 is minimized.
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The k-means Problem

k-means

Given a set of points S ⊂ Rd in a d dimensional Euclidean space,
and an integer k , output a set T ⊂ Rd of points (called centers)
such that |T | = k and the following cost function is minimised:

cost(S ,T ) =
∑
x∈S

min
z∈T
||x − z ||2.

How hard is the 1-means problem?

Given x1, ..., xn ∈ Rd find a point z ∈ Rd such that
f (z) =

∑
i ||xi − z ||2 is minimized.

What is ∂f (z)
∂zi

?

So, for what z ,
∑

i ||xi − z ||2 gets minimized?
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The k-means Problem

k-means

Given a set of points S ⊂ Rd in a d dimensional Euclidean space,
and an integer k , output a set T ⊂ Rd of points (called centers)
such that |T | = k and the following cost function is minimised:

cost(S ,T ) =
∑
x∈S

min
z∈T
||x − z ||2.

How hard is the 1-means problem?

Given x1, ..., xn ∈ Rd find a point z ∈ Rd such that
f (z) =

∑
i ||xi − z ||2 is minimized.

What is ∂f (z)
∂zi

? ∂f (z)
∂zi

= nzi −
∑

j xji

So, for what z ,
∑

i ||xi − z ||2 gets minimized? z =
∑

i xi
n∑

i xi
n is called the centroid of the points x1, ..., xn.

Ragesh Jaiswal, CSE, IIT Delhi COL870: Clustering Algorithms



The k-means Problem

k-means

Given a set of points S ⊂ Rd in a d dimensional Euclidean space,
and an integer k , output a set T ⊂ Rd of points (called centers)
such that |T | = k and the following cost function is minimised:

cost(S ,T ) =
∑
x∈S

min
z∈T
||x − z ||2.

How hard is the k-means problem for k > 1 when d = 1? In
other words, how hard is the 1-dimensional k-means problem?
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The k-means Problem

k-means

Given a set of points S ⊂ Rd in a d dimensional Euclidean space,
and an integer k , output a set T ⊂ Rd of points (called centers)
such that |T | = k and the following cost function is minimised:

cost(S ,T ) =
∑
x∈S

min
z∈T
||x − z ||2.

How hard is the k-means problem for k > 1 when d = 1? In
other words, how hard is the 1-dimensional k-means problem?

There is a simple Dynamic Programming algorithm for this
problem!
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The k-means Problem

k-means

Given a set of points S ⊂ Rd in a d dimensional Euclidean space,
and an integer k , output a set T ⊂ Rd of points (called centers)
such that |T | = k and the following cost function is minimised:

cost(S ,T ) =
∑
x∈S

min
z∈T
||x − z ||2.

How hard is the k-means problem for k > 1 and d > 1?

NP-hard.
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End
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