- Use of unfair means will be severely penalized.

There are 6 questions for a total of 20 points.

1. Given a graph, counting the number of independent sets in the graph is called the \# INDEPENDENT SETS problem. Show the following:
(1) (a) Show that \# INDEPENDENT SETS is \#P-complete.
(b) Show that approximating \# INDEPENDENT SETS within any constant factor is NP-hard.
(2) 2. Let GI denote the graph isomorphism problem. Show that if there is an efficient algorithm that solves the GI problem on $(n-1)$ vertex graphs, then there is an efficient algorithm that solves the problem on n vertex graphs.
(Recall that this is known as the downwards self reducibility property)
(3) 3. Consider the following optimization problem:

Let V be a $\mathrm{PCP}(\log n, 1)$ verifier for 3SAT. On input ψ, a 3SAT formula, find a proof that maximises the acceptance probability of V.

Argue that there is no PTAS for the above problem, unless $P=N P$.
4. Show the following:
(1) (a) A language L is said to be in $\mathrm{PCP}_{1, s}[O(\log n), 2]$ is there is a PCP verifier with completeness 1 and soundness s and that uses exactly 2 queries and $O(\log n)$ random bits. Show that if SAT \in $\mathrm{PCP}_{1, s}[O(\log n), 2]$ for some constant $0<s<1$, then $\mathrm{P}=\mathrm{NP}$.
(b) If SAT $\in \operatorname{PCP}(r(n), 1)$ for $r(n)=o(\log n)$ then $\mathrm{P}=\mathrm{NP}$.
(3) 5. For $b_{1}, b_{2}, b_{3} \in\{0,1\}$, let $\operatorname{MAJ}\left(b_{1}, b_{2}, b_{3}\right)$ denote the majority bit in b_{1}, b_{2}, b_{3}. Consider the following optimization problem:

MAX-MAJ: Given a bunch of majority constraints over n Boolean variables x_{1}, \ldots, x_{n} each containing 3 variables. That is, constraints of the form $\operatorname{MAJ}\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)=b$, find an assignment that satisfies the maximum number of such majority constraints.

Show that there does not exist an efficient $(2 / 3+\epsilon)$ approximation for MAX-MAJ unless $P=N P$.
(5) 6. Let $w=H(x)$ be the Hadamard code for a message $x \in\{0,1\}^{n}$. You receive a corrupted version \tilde{w} of the codeword such that the following holds:

$$
\mathbf{P r}_{r \in\{0,1\}^{n}}[w[x]=\tilde{w}[x]] \geq 1 / 2+\epsilon, \text { for some } \epsilon>0
$$

Show that there is an algorithm A that outputs the message x with probability at least $\Omega\left(\epsilon^{2}\right)$. Discuss the running time of your algorithm.
(This problem involves reading and understanding the Goldreich-Levin Theorem. Please write the answer in your own words.)

