CSL 356: Analysis and Design of Algorithms

Instructor: Ragesh Jaiswal

1. Another algorithm for max-flow

Consider the following slightly changed version of the Ford-Fulkerson max-flow algorithm. This algorithm is also due to Jack Edmonds and Richard Karp.

Max-Flow

- Start with a flow f such that $\forall e \in E, f(e)=0$.
- While there is an $s-t$ path in G_{f}
- Find an $s-t$ path P in G_{f} with largest bottleneck value.
- Augment along P to obtain f^{\prime}.
- Update f to f^{\prime} and G_{f} to $G_{f^{\prime}}$
return(f).
(a) Think of an algorithm to find the largest bottleneck path from s to t in a given graph. A bottleneck path is a path such that the bottleneck edge has maximum weight. Discuss its running time.
(Hint: Try ideas from Dijkstra's Algorithm.)
(b) Let f be any $s-t$ flow and t be the value of maximum flow in the residual graph G_{f}. Let f^{\prime} be the new flow after one augmentation and t^{\prime} be the value of the new maximum flow in the residual graph $G_{f^{\prime}}$. Argue that $t^{\prime} \leq(1-1 / m) \cdot t$.
(c) Use the properties you showed above to argue that for a graph with integer capacities, the algorithm runs in time $O\left(m^{2} \cdot \log m \cdot \log f^{*}\right)$, where f^{*} is the value of the max-flow in the original graph G.

