CSL 356: Analysis and Design of Algorithms

Instructor: Ragesh Jaiswal

1. Another algorithm for max-flow

Consider the following slightly changed version of the Ford-Fulkerson max-flow algorithm. This algorithm is also due to Jack Edmonds and Richard Karp.

Max-Flow

- Start with a flow f such that $\forall e \in E, f(e) = 0$.
- While there is an s-t path in G_f
 - Find an s-t path P in G_f with largest bottleneck value.
 - Augment along P to obtain f'.
 - Update f to f' and G_f to $G_{f'}$

return(f).

- (a) Think of an algorithm to find the *largest bottleneck path* from s to t in a given graph. A bottleneck path is a path such that the bottleneck edge has maximum weight. Discuss its running time.
 - (Hint: Try ideas from Dijkstra's Algorithm.)
- (b) Let f be any s-t flow and t be the value of maximum flow in the residual graph G_f . Let f' be the new flow after one augmentation and t' be the value of the new maximum flow in the residual graph $G_{f'}$. Argue that $t' \leq (1-1/m) \cdot t$.
- (c) Use the properties you showed above to argue that for a graph with integer capacities, the algorithm runs in time $O(m^2 \cdot \log m \cdot \log f^*)$, where f^* is the value of the max-flow in the original graph G.