
CSL 356: Analysis and Design of Algorithms (CSE, IIT Delhi, Semester I, 2012-13) Major Exam

Name:

Entry number:

• Always try to give algorithm with best possible running time. The points that you
obtain will depend on the running time of your algorithm. For example, a student
who gives an O(n) algorithm will receive more points than a student who gives an
O(n2) algorithm.

• You are required to give proofs of correctness whenever needed. For example, if you
give a greedy algorithm or an algorithm using network flow for some problem, then
you should also give a proof why this algorithm outputs optimal solution.

• You may use any of the following known NP-complete problems to show
that a given problem is NP-complete: 3-SAT, INDEPENDENT-SET, VERTEX-
COVER, SUBSET-SUM, 3-COLORING, 3D-MATCHING, SET-COVER, CLIQUE,
HAMILTONIAN-CYCLE, HAMILTONIAN-PATH.

• Some of the questions might be related. Make sure you read all questions.

• Use of unfair means will be severely penalized.

There are 5 questions for a total of 30 points.

1. (3 points) Given integers a and b that can be represented in m and n bits respectively, design an
algorithm to compute ab. Discuss running time in terms of m and n. You may assume that multiplying
two numbers is a unit time operation irrespective of the size of the numbers.

Solution: Here is the algorithm that computes ab time O(n) time:
Power(a, b)

If (b == 0) reutrn(1)

y ← Power(a, bb/2c)
If (b is even) return(y · y)

else return(y · y · a)

Let T (m,n) denote the running time of the algorithm. Then we have T (m,n) = T (m,n− 1) +O(1)
and T (m, 1) = O(1), which gives T (m,n) = O(n).

2. (3 points) Consider the following problem:

LONG-PATH: Given a weighted, directed graph G = (V,E), two vertices s, t ∈ V and a
number W , determine if there is a simple path between s and t such that the sum of weights
of edges in this path is ≥W .

Recall that a simple path is a path that does not have any vertices repeated. Show that LONG-PATH
is NP-Complete.
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Solution: A simple path of of weight at leastW acts as a short certificate and the certifier just checks
this path. So, LONG-PATH ∈ NP . To show that LONG-PATH is NP-complete, we will show that
HAMILTONIAN-PATH ≤p LONG-PATH. Here is an algorithm that solves the HAMILTONIAN-
PATH problem given using an algorithm, Long-Path for solving the LONG-PATH problem:

Check-Ham-Path(G)

1. Construct G′ from G by giving weight of 1 to all edges of G.

2. For all pairs of vertices s, t ∈ V
3. If (Long-Path(G′, s, t, n− 1) == 1)then return(1)

4. return(0)

Claim 1. If G has a hamiltonian path, then Check-Ham-Path returns 1.
Proof. Since G has a hamiltonian path there exists vertices s, t and a path from s to t that visits
all vertice exactly once. This path has length n− 1 in G′. So the algorithm returns 1 in one of the
iterations.

Claim 2. If Check-Ham-Path returns 1, then G has a hamiltonian path.
Proof. Since the algorithm returns 1, there is a pair of vertices s, t such that there is a simple path
of length n − 1 in G′. This means that this path visits all vertices exactly once. This means that
this path is a hamiltonian path.

3. Given an undirected, unweighted graph G = (V,E), consider the following four Linear Programs:

LP1 LP2 LP3 LP4
Maximize

∑
e∈E ye Maximize

∑
e∈E ye Minimize

∑
v∈V xv Minimize

∑
v∈V xv

Subject to: Subject to: Subject to: Subject to:
For every u ∈ V , For every u ∈ V , For every (u, v) ∈ E, For every (u, v) ∈ E,∑
e:e contains u ye ≤ 1,

∑
e:e contains u ye ≤ 1, xu + xv ≥ 1, xu + xv ≥ 1,

and and and and
∀e ∈ E, ye ∈ {0, 1} ∀e ∈ E, 0 ≤ ye ≤ 1 ∀v ∈ V, 0 ≤ xv ≤ 1 ∀v ∈ V, xv ∈ {0, 1}

Let F1, F2, F3, F4 denote the value of the optimal solutions of LP1, LP2, LP3, and LP4 respectively.
Answer the following:

(a) (2 points) Show that F1 is the cardinality of maximum matching in G. A matching in a graph is
defined to be a subset S ⊆ E of edges such that each vertex is present as an endpoint in at most
one of the edges in S. A maximum matching is a matching with maximum cardinality.

Solution: We first show that if there is a matching of size k in G, then there is a feasible
solution of LP1 with objective value k. Let M be a matching of size k. Consider the following
solution to LP1: ye = 1 iff e ∈ M . Note that this assignment to variables satisfies all the
constraints, since for any vertex u if ye = 1 for e = (u, v), then ye′ for all edges e′ 6= e incident
on u is 0 since e is part of a matching.

Next, we show that if there a feasible solution to LP1 with objective value k, then there
is a matching in G of size k. Indeed, consider any feasible solution {y′1, ..., y′|E|} to LP1 with

objective value k. Let M ′ contain edge e iff y′e = 1. Note that M ′ is a matching in G (otherwise
some constraint fails), and since

∑
e∈E y

′
e = k, we have |M ′| = k.

From the above, we know that there is a matching in G of size F1. A matching of larger size
than F1 cannot exist since it will contradict with the fact that F1 is the optimal solution to
LP1.

(b) (3 points) We know that F4 is the cardinality of minimum vertex cover of G. Argue that F1 ≤ F4.
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Solution: Let M be any matching in G and let S be any vertex cover of G.

Claim. For every (u, v) ∈M , at least one of u and v is in S.
Proof. This is true since otherwise the edge (u, v) is not covered by S.

Note that since each vertex occurs in at most one edge in M , the above claim implies that
|M | ≤ |S|. Let Mmax denote a maximum matching and let Smin be a minimum vertex cover
of G. Then from above claim, we have that F1 = |Mmax| ≤ |Smin| = F4.

(c) (4 points) Show that F1 ≤ F3 and that F2 ≤ F4.

Solution: This follows from weak LP duality that we discussed in a tutorial. We will show
that F1 ≤ F2, F3 ≤ F4, and F2 ≤ F3. The first two inequalities follow from the fact that
LP2 and LP3 are relaxed versions of LP1 and LP4 respectively (since if integer constraints
are relaxed, the optimal value can only get better). F2 ≤ F3 follows from weak duality. Let
Y ′ = (y′1, ..., y

′
|E|) be any feasible solution of LP2 with objective value F ′

2 and X ′ = (x′1, ..., x
′
|V |)

be any feasible solution to LP3 with objective value F ′
3. Consider any edge e = (u, v) ∈ E and

consider the inequality w.r.t. this edge in LP3, i.e., xu + xv ≥ 1. We know that x′u + x′v ≥ 1
since X ′ is a feasible solution to LP3. We multiply both sides of the inequality by y′e to get
the following: y′e · x′u + y′e · x′v ≥ y′e. Note that the inequality does not change because y′e ≥ 0.
We do this for all inequalities in LP3 and then combine them to get:

∑
u∈V

x′u ·

( ∑
e:e contains u

y′e

)
≥
∑
e∈E

y′e

Since Y ′ is a feasible solution to LP2, we have that for any u ∈ V ,
∑
e:e contains u y

′
e ≤ 1.

Using this, we can replace the quantities within the brackets above with 1 and obtain:∑
u∈V

x′u ≥
∑
e∈E

y′e

This gives us F ′
2 ≤ F ′

3. Note that this is true for any pair of feasible solutions and so it will be
true for the optimal solutions which implies that F2 ≤ F3.

(d) (2 points) Note that LP1 is an instance of a problem that is NP hard (this was discussed in the
lectures). On the other hand, there is an efficient algorithm (known as Edmond’s algorithm) that
computes the maximum matching in any given graph in time O(|E|

√
|V |). Why doesn’t this imply

that P = NP? Give reasons.

Solution: The NP-hardness is in the worst-case sense. There might be a large number of
instances which might be easy to solve. The ILP instances arising from the matching problem
are a small subset of instances of the problem that are easy to solve. This does not imply that
ILP problem is easy.

(e) (4 points) Consider the following greedy algorithm for computing a minimum vertex cover of G:
Iteratively pick and store an edge (u, v) from G and remove edges adjacent to u and v. Note that
this gives a maximal matching in G. Let S be all the vertices occurring (as endpoints of some edge)
in this matching. Argue that S is a vertex cover and that |S| ≤ 2 · F4. This means that the greedy
algorithm is a 2-approximation algorithm.

Solution: The algorithm gives a maximal matching M in G. Let S be the vertices occurring
in M .
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Claim. S is a vertex cover.
Proof. For the sake of contradiction there is an edge (u, v) that is not covered. This means
that u /∈ S and v /∈ S. This implies that neither u not v occur in any any edge in M . But then
this means that M is not a maximal matching since we can add the edge (u, v) to M to get a
matching of larger cardinality.

Let OPT denote any minimum vertex cover of G. We know that for every edge (u, v) ∈ M ,
either u ∈ OPT or v ∈ OPT (or both), otherwise the edge (u, v) is not covered. This means
that |M | ≤ |OPT | = F4. Now, S is of size 2|M |. So, we get that |S| = 2 · |M | ≤ 2 · F4.

4. (5 points) There is an n × n grid in which some cells are empty and some are filled. The empty/filled
cells are given by an n×n, 0/1 matrix F . Cell (i, j) is empty iff F [i, j] = 0. You have unbounded supply
of 2×1 tiles (called dominoes). Each domino could be placed on the empty cells of the grid in horizontal
and vertical manner (note that you need two consecutive empty cells on the grid for doing this). The
problem is to determine if the grid can be covered by placing these 2× 1 dominos such that each empty
cell is covered by exactly one domino. Do you think this problem is in P? You may assume that P 6=
NP for this problem. Give reasons.

Figure 1: Example of a 4× 4 grid that can be covered using 2× 1 domino tiles.

Solution: You can reduce this problem to the problem of finding a maximum matching in a general
graph. You know from problem 3(d) that there is an algorithm (Edmond’s algorithm) that solves the
problem in polynomial time. Hence, this problem is in P. Here is the reduction to graph matching.
Given F , we create a graph G with n2 vertices, one vertex corresponding to each cell in the grid.
Every vertex corresponding to an empty cell has edges to vertices corresponding to its neighboring
empty cells (neighbor in the grid). The vertices corresponding to full cells do not have any incident
edges. Let m be the number of empty cells in the grid. Now, we show the following:

Claim. There exists a domino tiling of the grid iff the maximum matching in G is of size m/2.
Proof. If there is a domino tiling, then we consider the matching where the pair of adjacent vertices
on which a domino tile is placed is part of the matching. Since the grid can be tiled, m/2 tiles can
be placed which means that there are m/2 edges in the matching. Also note that since the graph
has m connected vertices, it cannot have matching of size > m/2.

In the other direction, if the maximum matching is of size m/2, then we just place tiles on adjacent
cells of the grid indicated by the edges in the matching. This way we cover the entire grid.

5. (4 points) There are n men with heights m1, ...,mn and n women with heights w1, ..., wn. You have to
match men to women for a dance such that the average difference in height of each pair, is minimized.
Design an algorithm to solve this problem. Discuss running time.
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Solution: We will show that the following greedy algorithm minimizes the average difference in
height:

Separately, sort the men and women according to their heights (say increasing order).
Match the first man in the sequence to the first woman, second man in the sequence to
the second woman, and so on.

The running time of this algorithm is clearly O(n log n).

We will now prove optimality. For analysis assume that m1 ≤ m2 ≤ ... ≤ mn and w1 ≤ w2 ≤ ... ≤
wn. Consider any optimal solution σ. This solution is just a permutation of 1...n. This means that
as per the optimal solution, M1 is matched with Wσ(1), M2 is matched with Wσ(2), and so on. Let
i be the smallest index such that σ(i) 6= i. Let j be the index such that σ(j) = i. Clearly, j > i.
Consider another solution σ1 that is the same as σ, except σ′(i) = i and σ′(j) = σ(i). We will show
that the average height difference as per σ′ is less than equal to the average height difference as per
σ. Let the average height difference as per σ and σ′ be denoted by H(σ) and H(σ′) respectively.
We have:

H(σ)−H(σ′) =
1

n
· (|mi − wσ(i)|+ |mj − wi| − |mi − wi| − |mj − wσ(i)|)

We consider the following 6 cases:

1. wi ≤ wσ(i) ≤ mi ≤ mj : In this case, H(σ)−H(σ′) = 0.

2. wi ≤ mi ≤ wσ(i) ≤ mj : In this case, H(σ)−H(σ′) = (1/n) · 2 · (wσ(i) −mi) ≥ 0.

3. mi ≤ wi ≤ wσ(i) ≤ mj : In this case, H(σ)−H(σ′) = (1/n) · 2 · (wσ(i) − wi) ≥ 0.

4. wi ≤ mi ≤ mj ≤ wσ(i): In this case, H(σ)−H(σ′) = (1/n) · 2 · (mj −mi) ≥ 0.

5. mi ≤ wi ≤ mj ≤ wσ(i): In this case, H(σ)−H(σ′) = (1/n) · 2 · (mj − wi) ≥ 0.

6. mi ≤ mj ≤ wi ≤ wσ(i): In this case, H(σ)−H(σ′) = 0.

So, in all the cases H(σ′) ≤ H(σ). We continue with this exchange operation and at the end we
obtain our greedy solution.
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