CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal

CSE, IIT Delhi

Linear Programming

Solving LP

Linear Programming: Solving LP

- (*Complication 1*) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm:
 - Given *L*, check if all b_i 's are positive. In that case return *L*.
 - Consider L'. Perform the pivoting using the equation with smallest b_i to obtain L''.
 - Solve *L*" using Simplex and find the optimal objective value *Opt*.
 - If $(Opt \neq 0)$, the output "LP is infeasible".
 - Otherwise, let L_S be the LP obtained at the end of the simplex. Do the following:
 - If x_0 is a basic variable in L_S , then perform a pivoting step to obtain L_S' .
 - Remove all instances of x_0 and rewrite the objective function of L in terms of non-basic variables of L_s '.

Linear Programming: Solving LP

- (*Complication 1*) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm: Example
- *L*:
 - $z = 2x_1 x_2$
 - $x_3 = 2 2x_1 + x_2$
- $x_4 = -4 x_1 + 5x_2$ • L':
 - $z = -x_0$
 - $x_3 = 2 2x_1 + x_2 + x_0$
 - $x_4 = -4 x_1 + 5x_2 + x_0$
- *L''*: After Pivot using $(x_4 = ...)$
 - $z = -4 x_1 + 5x_2 x4$
 - $x_3 = 6 x_1 4x_2 + x_4$
 - $x_0 = 4 + x_1 5x_2 + x_4$

Linear Programming: Solving LP

- (*Complication 1*) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm: Example
- *L*:

•
$$z = 2x_1 - x_2$$

•
$$x_3 = 2 - 2x_1 + x_2$$

•
$$x_4 = -4 - x_1 + 5x_2$$

 L_S :

•
$$z = -x_0$$

•
$$x_2 = 4/5 - x_0/5 + x_1/5 + x_4/5$$

•
$$x_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

•
$$L_S$$
:

•
$$z = 2x_1 - x_2 = 2x_1 - (4/5 + x_1/5 + x_4/5) = -4/5 + 9x_1/5 - x_4/5$$

•
$$x_2 = 4/5 + x_1/5 + x_4/5$$

•
$$x_3 = 14/5 - 9x_1/5 + x_4/5$$

Linear Programming

Approximation algorithms

Problem(Weighted Set Cover): Given subsets S₁, ..., S_m of a universe U of elements and positive weights W₁, ..., W_m attached with these subsets. Find a subset S of {S₁, ..., S_m} such that S covers all elements of U and ∑_{i:Si∈S} W_i is minimized. Also, assume that each element appears in at most f subsets.

- Problem(Weighted Set Cover): Given subsets S₁, ..., S_m of a universe U of elements and positive weights W₁, ..., W_m attached with these subsets. Find a subset S of {S₁, ..., S_m} such that S covers all elements of U and ∑_{i:Si∈S} W_i is minimized. Also, assume that each element appears in at most f subsets.
- Integer LP formulation:
 - Minimize $\sum_i w_i \cdot x_i$
 - Subject to:
 - $\sum_{i:S_i \text{ contains } e} x_i \ge 1$, for every element e in U
 - $x_i \in \{0, 1\}$, for every *i*.

- Problem(Weighted Set Cover): Given subsets S₁, ..., S_m of a universe U of elements and positive weights W₁, ..., W_m attached with these subsets. Find a subset S of {S₁, ..., S_m} such that S covers all elements of U and ∑_{i:Si∈S} W_i is minimized. Also, assume that each element appears in at most f subsets.
- *Relaxed* LP:
 - Minimize $\sum_i w_i \cdot x_i$
 - Subject to:
 - $\sum_{i:S_i \text{ contains } e} x_i \ge 1$, for every element e in U
 - $x_i \ge 0$, for every *i*.

- Problem(Weighted Set Cover): Given subsets S₁, ..., S_m of a universe U of elements and positive weights W₁, ..., W_m attached with these subsets. Find a subset S of {S₁, ..., S_m} such that S covers all elements of U and ∑_{i:Si∈S} W_i is minimized. Also, assume that each element appears in at most f subsets.
- Let O_I be the optimal solution to the Integer LP and let O_R be the optimal solution to the relaxed LP.
- <u>Claim</u>: $O_I \geq O_R$.

- Problem(Weighted Set Cover): Given subsets S₁, ..., S_m of a universe U of elements and positive weights W₁, ..., W_m attached with these subsets. Find a subset S of {S₁, ..., S_m} such that S covers all elements of U and ∑_{i:Si∈S} W_i is minimized. Also, assume that each element appears in at most f subsets.
- Let O_I be the optimal solution to the Integer LP and let O_R be the optimal solution to the relaxed LP.
- <u>Claim</u>: $O_I \geq O_R$.
- Rounding:
 - Let $(r_1, ..., r_m)$ give the optimal solution to the relaxed LP.
 - If $r_i \ge 1/f$, then put S_i in the set S.

- <u>Problem(Weighted Set Cover)</u>: Given subsets S_1, \ldots, S_m of a universe U of elements and positive weights W_1, \ldots, W_m attached with these subsets. Find a subset S of $\{S_1, \ldots, S_m\}$ such that S covers all elements of U and $\sum_{i:S_i \in S} W_i$ is minimized. Also, assume that each element appears in at most f subsets.
- Let O_I be the optimal solution to the Integer LP and let O_R be the optimal solution to the relaxed LP.
- <u>Claim</u>: $O_I \geq O_R$.
- Rounding:
 - Let $(r_1, ..., r_m)$ give the optimal solution to the relaxed LP.
 - If $r_i \ge 1/f$, then put S_i in the set S.
- <u>Claim</u>: *S* is a set cover of size at most $f \cdot OPT$.

Linear Programming

Randomized approximation algorithms

Linear Programming: rand. approx.

- Recall the 2-SAT problem. Given a 2-SAT formula, determine if the formula has a satisfying assignment.
- 2-SAT is in **P**.
- <u>Problem(L-2-SAT)</u>: Given a 2-SAT formula (with *n* variables and *m* clauses) and an integer *k*, determine if there is an assignment that makes at least *k* clauses true.
- <u>Claim 1</u>: L-2-SAT is **NP** complete.
 - Proof:
 - <u>Claim 1.1</u>: L-2-SAT is in **NP**.
 - <u>Claim 1.2</u>: CLIQUE \leq_p L-2-SAT.

Linear Programming: rand. approx.

- <u>Claim 1.2</u>: CLIQUE \leq_p L-2-SAT.
- <u>Proof</u>: Given an instance of the CLIQUE problem (*G*, *k*), we construct the following instance of the L-2-SAT problem.
 - For each vertex i, we have a variable x_i .
 - We use one extra variable Z.
 - We construct the following clauses:
 - $C_1 = \{(x_1 \lor z), (x_2 \lor z), \dots, (x_n \lor z)\}$
 - $C_2 = \{(x_1 \lor z'), (x_2 \lor z'), \dots, (x_n \lor z')\}$
 - $C_3 = \{(x_i' \lor x_j') \mid (i, j) \text{ is not in } E\}$
 - The 2-SAT formula α contains all the above clauses.
 - <u>Claim</u>: *G* has a clique of size at least *k* if and only if there is an assignment that makes at least $(|V| + |C_3| + k)$ clauses of α to be true.

End