CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Linear Programming

Solving LP

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm:
- Given L, check if all b_{i} 's are positive. In that case return L.
- Consider L^{\prime}. Perform the pivoting using the equation with smallest b_{i} to obtain $L^{\prime \prime}$.
- Solve $L^{\prime \prime}$ using Simplex and find the optimal objective value Opt.
- If $(O p t \neq 0)$, the output "LP is infeasible".
- Otherwise, let L_{S} be the LP obtained at the end of the simplex. Do the following:
- If x_{0} is a basic variable in L_{S}, then perform a pivoting step to obtain $L_{S}{ }^{\prime}$.
- Remove all instances of x_{0} and rewrite the objective function of L in terms of non-basic variables of $L_{S}{ }^{\prime}$.

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm: Example
- L :
- $z=2 x_{1}-x_{2}$
- $x_{3}=2-2 x_{1}+x_{2}$
- $x_{4}=-4-x_{1}+5 x_{2}$
- L^{\prime} :
- $z=\quad-x_{0}$
- $x_{3}=2-2 x_{1}+x_{2}+x_{0}$
- $x_{4}=-4-x_{1}+5 x_{2}+x_{0}$
- $L^{\prime \prime}$: After Pivot using ($x_{4}=\ldots$)
- $z=-4-x_{1}+5 x_{2}-x 4$
- $x_{3}=6-x_{1}-4 x_{2}+x_{4}$
- $x_{0}=4+x_{1}-5 x_{2}+x_{4}$

Linear Programming: Solving LP

- (Complication 1) What if the initial basic solution is not a feasible solution?
- Pre-processing algorithm: Example
- L :
- $z=2 x_{1}-x_{2}$
- $x_{3}=2-2 x_{1}+x_{2}$
- $x_{4}=-4-x_{1}+5 x_{2}$
- L_{S} :
- $z=-x_{0}$
- $x_{2}=4 / 5-x_{0} / 5+x_{1} / 5+x_{4} / 5$
- $x_{3}=14 / 5+4 x_{0} / 5-9 x_{1} / 5+x_{4} / 5$
- L_{S} :
- $z=2 x_{1}-x_{2}=2 x_{1}-\left(4 / 5+x_{1} / 5+x_{4} / 5\right)=-4 / 5+$ $9 x_{1} / 5-x_{4} / 5$
- $x_{2}=4 / 5+x_{1} / 5+x_{4} / 5$
- $x_{3}=14 / 5-9 x_{1} / 5+x_{4} / 5$

Linear Programming

Approximation algorithms

Linear Programming: Approx. algo.

- Problem(Weighted Set Cover): Given subsets S_{1}, \ldots, S_{m} of a universe U of elements and positive weights w_{1}, \ldots, w_{m} attached with these subsets. Find a subset S of $\left\{S_{1}, \ldots, S_{m}\right\}$ such that S covers all elements of U and $\sum_{i: S_{i} \in S} w_{i}$ is minimized. Also, assume that each element appears in at most f subsets.

Linear Programming: Approx. algo.

- Problem(Weighted Set Cover): Given subsets S_{1}, \ldots, S_{m} of a universe U of elements and positive weights w_{1}, \ldots, w_{m} attached with these subsets. Find a subset S of $\left\{S_{1}, \ldots, S_{m}\right\}$ such that S covers all elements of U and $\sum_{i: S_{i} \in S} w_{i}$ is minimized. Also, assume that each element appears in at most f subsets.
- Integer LP formulation:
- Minimize $\sum_{i} w_{i} \cdot x_{i}$
- Subject to:
- $\sum_{i: S_{i} \text { containse } e} x_{i} \geq 1$, for every element e in U
- $x_{i} \in\{0,1\}$, for every i.

Linear Programming: Approx. algo.

- Problem(Weighted Set Cover): Given subsets S_{1}, \ldots, S_{m} of a universe U of elements and positive weights w_{1}, \ldots, w_{m} attached with these subsets. Find a subset S of $\left\{S_{1}, \ldots, S_{m}\right\}$ such that S covers all elements of U and $\sum_{i: S_{i} \in S} w_{i}$ is minimized. Also, assume that each element appears in at most f subsets.
- Relaxed LP:
- Minimize $\sum_{i} w_{i} \cdot x_{i}$
- Subject to:
- $\sum_{i: S_{i} \text { contains } e} x_{i} \geq 1$, for every element e in U
- $x_{i} \geq 0$, for every i.

Linear Programming: Approx. algo.

- Problem(Weighted Set Cover): Given subsets S_{1}, \ldots, S_{m} of a universe U of elements and positive weights w_{1}, \ldots, w_{m} attached with these subsets. Find a subset S of $\left\{S_{1}, \ldots, S_{m}\right\}$ such that S covers all elements of U and $\sum_{i: S_{i} \in S} w_{i}$ is minimized. Also, assume that each element appears in at most f subsets.
- Let O_{I} be the optimal solution to the Integer LP and let O_{R} be the optimal solution to the relaxed LP.
- Claim: $O_{I} \geq O_{R}$.

Linear Programming: Approx. algo.

- Problem(Weighted Set Cover): Given subsets S_{1}, \ldots, S_{m} of a universe U of elements and positive weights w_{1}, \ldots, w_{m} attached with these subsets. Find a subset S of $\left\{S_{1}, \ldots, S_{m}\right\}$ such that S covers all elements of U and $\sum_{i: S_{i} \in S} w_{i}$ is minimized. Also, assume that each element appears in at most f subsets.
- Let O_{I} be the optimal solution to the Integer LP and let O_{R} be the optimal solution to the relaxed LP.
- Claim: $O_{I} \geq O_{R}$.
- Rounding:
- Let $\left(r_{1}, \ldots, r_{m}\right)$ give the optimal solution to the relaxed LP.
- If $r_{i} \geq 1 / f$, then put S_{i} in the set S.

Linear Programming: Approx. algo.

- Problem(Weighted Set Cover): Given subsets S_{1}, \ldots, S_{m} of a universe U of elements and positive weights w_{1}, \ldots, w_{m} attached with these subsets. Find a subset S of $\left\{S_{1}, \ldots, S_{m}\right\}$ such that S covers all elements of U and $\sum_{i: S_{i} \in S} w_{i}$ is minimized. Also, assume that each element appears in at most f subsets.
- Let O_{I} be the optimal solution to the Integer LP and let O_{R} be the optimal solution to the relaxed LP.
- Claim: $O_{I} \geq O_{R}$.
- Rounding:
- Let $\left(r_{1}, \ldots, r_{m}\right)$ give the optimal solution to the relaxed LP.
- If $r_{i} \geq 1 / f$, then put S_{i} in the set S.
- Claim: S is a set cover of size at most $f \cdot O P T$.

Linear Programming

Randomized approximation algorithms

Linear Programming: rand. approx.

- Recall the 2-SAT problem. Given a 2-SAT formula, determine if the formula has a satisfying assignment.
- 2-SAT is in \mathbf{P}.
- Problem(L-2-SAT): Given a 2-SAT formula (with n variables and m clauses) and an integer k, determine if there is an assignment that makes at least k clauses true.
- Claim 1: L-2-SAT is NP complete.
- Proof:
- Claim 1.1: L-2-SAT is in NP.
- Claim 1.2: CLIQUE \leq_{p} L-2-SAT.

Linear Programming: rand. approx.

- Claim 1.2: CLIQUE \leq_{p} L-2-SAT.
- Proof: Given an instance of the CLIQUE problem (G, k), we construct the following instance of the L-2-SAT problem.
- For each vertex i, we have a variable x_{i}.
- We use one extra variable Z.
- We construct the following clauses:
- $C_{1}=\left\{\left(x_{1} \vee z\right),\left(x_{2} \vee z\right), \ldots,\left(x_{n} \vee z\right)\right\}$
- $C_{2}=\left\{\left(x_{1} \vee z^{\prime}\right),\left(x_{2} \vee z^{\prime}\right), \ldots,\left(x_{n} \vee z^{\prime}\right)\right\}$
- $C_{3}=\left\{\left(x_{i}{ }^{\prime} \vee x_{j}{ }^{\prime}\right) \mid(i, j)\right.$ is not in $\left.E\right\}$
- The 2-SAT formula α contains all the above clauses.
- Claim: G has a clique of size at least k if and only if there is an assignment that makes at least $\left(|V|+\left|C_{3}\right|+k\right)$ clauses of α to be true.

End

