
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Topics

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational intractability

 Other topics: Linear Programming

Linear Programming

Linear Programming: Introduction

 A large class of optimization problems in which the

constraints and optimization criterion are linear functions.

 A Linear Programming(LP) problem consists of assigning real

values to variables such that these variables

1. (Linear constraints) satisfy a set of linear equalities or

inequalities, and

2. (Objective function) maximize or minimize a given linear

objective function.

 Example: A cottage industry makes two kinds of products 𝑃1

and 𝑃2. The daily demand for 𝑃1 is 100 and the daily
demand for 𝑃2 is 200. The total amount of items that the
industry can produce in a day is 250. The industry makes
profit of 𝑅𝑠. 1 per unit item of type 𝑃1 and 𝑅𝑠. 5 per unit
item of type 𝑃2. How many items of 𝑃1 and 𝑃2 should the
industry produce to make maximum amount of profit?

 Let 𝑥1 be a variable denoting the amount of 𝑃1 items
produced by the industry and 𝑥2 the mount of 𝑃2 items.

 The goal is to maximize the linear objective function:
1 ⋅ 𝑥1 + 5 ⋅ 𝑥2

under the linear constraints:
𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200, 𝑥1 + 𝑥2 ≤ 250

Linear Programming: Introduction

 Problem(LP): Maximize the linear objective function:

1 ⋅ 𝑥1 + 5 ⋅ 𝑥2
under the linear constraints:

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200, 𝑥1 + 𝑥2 ≤ 250

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 5𝑥2 = 1050

𝑥1+ 5𝑥2 = 100

 Given a Linear Programming problem, we will use the

following definitions:

 Feasible solution: An assignment to the variables that satisfy all

the linear constraints.

 Example: 𝑥1 = 50, 𝑥2 = 100 is a feasible solution.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

 Question: Does a Linear Programming problem always have

a feasible solution?

Linear Programming: Introduction

 Question: Does a Linear Programming problem always have

a feasible solution?

 Not necessarily. Suppose the linear constraints are

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200,
𝑥1 + 𝑥2 ≤ 250, 𝑥1 + 10 ⋅ 𝑥2 ≥ 3000

Linear Programming: Introduction

 Question: Does a Linear Programming problem always have

a feasible solution?

 Not necessarily. Suppose the linear constraints are

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200,
𝑥1 + 𝑥2 ≤ 250, 𝑥1 + 10 ⋅ 𝑥2 ≥ 3000

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 10 ⋅ 𝑥2 = 3000

 Infeasible LP: A linear program is said to be infeasible if there

are no feasible solutions.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 10 ⋅ 𝑥2 = 3000

 Unbounded LP: A linear program is said to be unbounded if

it is possible to achieve arbitrarily high values of the objective

function.

 Example: Maximize (𝑥1 + 5 ⋅ 𝑥2)
subject to 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥2 ≤ 200.

Linear Programming: Introduction

𝑥1

𝑥2200

 Claim: For any linear program that is not infeasible and

unbounded, the objective function value is maximized at one

of the vertices of the feasible region.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 5𝑥2 = 1050

𝑥1+ 5𝑥2 = 100

 Naïve idea for solving an LP:

 Try all possible vertex of the feasible region and return the one

that maximizes the objective function.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 5𝑥2 = 1050

𝑥1+ 5𝑥2 = 100

 Naïve idea for solving an LP:

 Try all possible vertex of the feasible region and return the one

that maximizes the objective function.

 Suppose the LP has 𝑛 variables and 𝑚 = 𝑂(𝑛) constraints.

How many vertices can the feasible region have in worst case?

Linear Programming: Introduction

 Naïve idea for solving an LP:

 Try all possible vertex of the feasible region and return the one

that maximizes the objective function.

 Suppose the LP has 𝑛 variables and 𝑚 = 𝑂(𝑛) constraints.

How many vertices can the feasible region have in worst case?

 Exponentially many! Consider the LP: maximize (𝑥1+ 𝑥2+⋯+ 𝑥𝑛)
subject to 0 ≤ 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ 1.

Linear Programming: Introduction

𝑥1

𝑥2

𝑥3

 Claim: There is an algorithm that solves any linear

programming problem instance that runs in polynomial time.

Linear Programming: Introduction

 Claim: There is an algorithm that solves any linear

programming problem instance that runs in polynomial time.

 The optimal solution may assign real numbers to some

variables even though all of the constraints of objective

function involve integers.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250 𝑥1+ 10 ⋅ 𝑥2 = 2000

𝑥1 = 500/9,
𝑥2 = 1750/9

 Claim: There is an algorithm that solves any linear programming
problem instance that runs in polynomial time.

 The optimal solution may assign real numbers to some variables
even though all of the constraints of objective function involve
integers.

 Suppose in addition to the linear constraint, we add another
constraint that all the variables should be integers. Such linear
programs are called Integer Linear Programs (ILP).

 Integer Linear Program(ILP): Consists of

 Linear objective function

 Linear constraints.

 All variables should be integers.
Decision-ILP: Given the above and an integer 𝑘, determine if there is
an integer assignment to the variables such that the objective function
value is at least 𝑘.

Linear Programming: Introduction

 How hard is Decision-ILP?

Linear Programming: Introduction

 How hard is Decision-ILP?

 Claim: Decision-ILP is NP-complete.

 Proof:

 Claim 1: Decision-ILP is in NP.

 Claim 2: 3-SAT ≤𝑝 Decision-ILP

Linear Programming: Introduction

 How hard is Decision-ILP?

 Claim: Decision-ILP is NP-complete.

 Proof:

 Claim 1: Decision-ILP is in NP.

 Claim 2: 3-SAT ≤𝑝 Decision-ILP

 Proof idea: Given a 3-SAT formula, we construct an instance of

Decision-ILP.

For each clause (e.g., (𝑥1 ∨ 𝑥2’ ∨ 𝑥3)) we create a linear constraint

(e.g., 𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1). We further consider constraints

0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 and that all variables are integers.

Linear Programming: Introduction

 How hard is Decision-ILP?

 Claim: Decision-ILP is NP-complete.

 Proof:
 Claim 1: Decision-ILP is in NP.

 Claim 2: 3-SAT ≤𝑝 Decision-ILP

 Proof idea: Given a 3-SAT formula, we construct an instance of Decision-
ILP.
For each clause (e.g., (𝑥1 ∨ 𝑥2’ ∨ 𝑥3)) we create a linear constraint
(e.g., 𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1). We further consider constraints
0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 and that all variables are integers.

 Formulating problems as an ILP is a standard way of solving many
combinatorial problems.

 Example: Maximum Independent set.

 Consider a 0 − 1 variable for each vertex, 1 denoting inclusion. For
each edge (𝑥, 𝑦), there is a constraint that 𝑥 + 𝑦 ≤ 1.

Linear Programming: Introduction

Linear Programming

Solving problems by formulating as Linear Programs

Linear Programming: Applications

 We saw how some combinatorial problems can be

formulated as an Integer Linear Programming (ILP)

problem.

 Unfortunately, ILP is hard.

 A number of problems can be formulated as a Linear

Programming problem and we know there is a polynomial

time algorithm for LP.

 Some interesting applications:

 Shortest 𝑠 − 𝑡 path in a directed graph with non-negative

weights.

 Maximum flow in a network graph.

Linear Programming: Applications
 Problem (Maximum 𝑠 − 𝑡 flow): Given a network graph

𝐺 = (𝑉, 𝐸) with special source 𝑠 and sink 𝑡, find the

maximum value of an 𝑠 − 𝑡 flow in the graph.

 Let 𝑚 = |𝐸|. We use 𝑚 variables, one for each edge.

 For an edge (𝑢, 𝑣), we will use variable 𝑓𝑢𝑣 to denote the

flow along the edge (𝑢, 𝑣).

Linear Programming: Applications
 Problem (Maximum 𝑠 − 𝑡 flow): Given a network graph

𝐺 = (𝑉, 𝐸) with special source 𝑠 and sink 𝑡, find the

maximum value of an 𝑠 − 𝑡 flow in the graph.

 Let 𝑚 = |𝐸|. We use 𝑚 variables, one for each edge.

 For an edge (𝑢, 𝑣), we will use variable 𝑓𝑢𝑣 to denote the
flow along the edge (𝑢, 𝑣).

 We construct the following LP given 𝐺.

 Maximize

 Subject to,

 𝑓𝑢𝑣 ≤ 𝑐(𝑢, 𝑣), for all (𝑢, 𝑣) in 𝐸.

 , for all 𝑢 in 𝑉 − {𝑠, 𝑡}.

 𝑓𝑢𝑣 ≥ 0.

Evs

svf
),(

Evu

uv

Euv

vu ff
),(),(

Linear Programming: Applications

 Problem (Shortest 𝑠 − 𝑡 path): Given a weighted, directed

graph 𝐺 = (𝑉, 𝐸). Find the length of the shortest path from

vertex 𝑠 to vertex 𝑡.

Linear Programming: Applications

 Problem (Shortest 𝑠 − 𝑡 path): Given a weighted, directed

graph 𝐺 = (𝑉, 𝐸). Find the length of the shortest path from

vertex 𝑠 to vertex 𝑡.

 Let 𝑛 = |𝑉|. We use 𝑛 variables, one for each vertex.

 For a vertex 𝑣, we will use variable 𝑑𝑣 to denote the length

of the shortest path from vertex 𝑠 to vertex 𝑣.

Linear Programming: Applications

 Problem (Shortest 𝑠 − 𝑡 path): Given a weighted, directed

graph 𝐺 = (𝑉, 𝐸). Find the length of the shortest path from

vertex 𝑠 to vertex 𝑡.

 Let 𝑛 = |𝑉|. We use 𝑛 variables, one for each vertex.

 For a vertex 𝑣, we will use variable 𝑑𝑣 to denote the length

of the shortest path from vertex 𝑠 to vertex 𝑣.

 We construct the following LP given 𝐺.

 Maximize 𝑑𝑡,

 subject to:

 For all edges 𝑢, 𝑣 ∈ 𝐸, 𝑑𝑣 ≤ 𝑑𝑢 + 𝑤(𝑢, 𝑣).

 𝑑𝑠 = 0.

End

