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Topics

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational intractability

 Other topics: Linear Programming



Linear Programming



Linear Programming: Introduction

 A large class of optimization problems in which the 

constraints and optimization criterion are linear functions.

 A Linear Programming(LP) problem consists of assigning real 

values to variables such that these variables

1. (Linear constraints) satisfy a set of linear equalities or 

inequalities, and

2. (Objective function) maximize or minimize a given linear

objective function. 



 Example: A cottage industry makes two kinds of products 𝑃1

and 𝑃2. The daily demand for 𝑃1 is 100 and the daily 
demand for 𝑃2 is 200. The total amount of items that the 
industry can produce in a day is 250. The industry makes 
profit of 𝑅𝑠. 1 per unit item of type 𝑃1 and 𝑅𝑠. 5 per unit 
item of type 𝑃2. How many items of 𝑃1 and 𝑃2 should the 
industry produce to make maximum amount of profit?

 Let 𝑥1 be a variable denoting the amount of 𝑃1 items 
produced by the industry and 𝑥2 the mount of 𝑃2 items.

 The goal is to maximize the linear objective function:
1 ⋅ 𝑥1 + 5 ⋅ 𝑥2

under the linear constraints:
𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200, 𝑥1 + 𝑥2 ≤ 250
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 Problem(LP): Maximize the linear objective function:

1 ⋅ 𝑥1 + 5 ⋅ 𝑥2
under the linear constraints:

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200, 𝑥1 + 𝑥2 ≤ 250
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 Given a Linear Programming problem, we will use the 

following definitions:

 Feasible solution: An assignment to the variables that satisfy all 

the linear constraints.

 Example: 𝑥1 = 50, 𝑥2 = 100 is a feasible solution. 
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 Question: Does a Linear Programming problem always have 

a feasible solution?
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 Question: Does a Linear Programming problem always have 

a feasible solution?

 Not necessarily. Suppose the linear constraints are

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200,
𝑥1 + 𝑥2 ≤ 250, 𝑥1 + 10 ⋅ 𝑥2 ≥ 3000
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 Question: Does a Linear Programming problem always have 

a feasible solution?

 Not necessarily. Suppose the linear constraints are

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥1 ≤ 100, 𝑥2 ≤ 200,
𝑥1 + 𝑥2 ≤ 250, 𝑥1 + 10 ⋅ 𝑥2 ≥ 3000
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 Infeasible LP: A linear program is said to be infeasible if there 

are no feasible solutions. 
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 Unbounded LP: A linear program is said to be unbounded if 

it is possible to achieve arbitrarily high values of the objective 

function.

 Example: Maximize (𝑥1 + 5 ⋅ 𝑥2)
subject to 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥2 ≤ 200.
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 Claim: For any linear program that is not infeasible and 

unbounded, the objective function value is maximized at one 

of the vertices of the feasible region.

Linear Programming: Introduction

𝑥1

𝑥2

100

200

𝑥1+ 𝑥2 = 250

𝑥1+ 5𝑥2 = 1050

𝑥1+ 5𝑥2 = 100



 Naïve idea for solving an LP: 

 Try all possible vertex of the feasible region and return the one 

that maximizes the objective function. 
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 Naïve idea for solving an LP: 

 Try all possible vertex of the feasible region and return the one 

that maximizes the objective function. 

 Suppose the LP has 𝑛 variables and 𝑚 = 𝑂(𝑛) constraints. 

How many vertices can the feasible region have in worst case?
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 Naïve idea for solving an LP: 

 Try all possible vertex of the feasible region and return the one 

that maximizes the objective function. 

 Suppose the LP has 𝑛 variables and 𝑚 = 𝑂(𝑛) constraints. 

How many vertices can the feasible region have in worst case?

 Exponentially many! Consider the LP: maximize (𝑥1+ 𝑥2+⋯+ 𝑥𝑛)
subject to 0 ≤ 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ 1. 
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 Claim: There is an algorithm that solves any linear 

programming problem instance that runs in polynomial time.
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 Claim: There is an algorithm that solves any linear 

programming problem instance that runs in polynomial time.

 The optimal solution may assign real numbers to some 

variables even though all of the constraints of objective 

function involve integers.
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 Claim: There is an algorithm that solves any linear programming 
problem instance that runs in polynomial time.

 The optimal solution may assign real numbers to some variables 
even though all of the constraints of objective function involve 
integers.

 Suppose in addition to the linear constraint, we add another 
constraint that all the variables should be integers. Such linear 
programs are called Integer Linear Programs (ILP).

 Integer Linear Program(ILP): Consists of

 Linear objective function

 Linear constraints.

 All variables should be integers.
Decision-ILP: Given the above and an integer 𝑘, determine if there is 
an integer assignment to the variables such that the objective function 
value is at least 𝑘.
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 How hard is Decision-ILP?
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 How hard is Decision-ILP?

 Claim: Decision-ILP is NP-complete.

 Proof: 

 Claim 1: Decision-ILP is in NP.

 Claim 2: 3-SAT ≤𝑝 Decision-ILP
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 How hard is Decision-ILP?

 Claim: Decision-ILP is NP-complete.

 Proof: 

 Claim 1: Decision-ILP is in NP.

 Claim 2: 3-SAT ≤𝑝 Decision-ILP

 Proof idea: Given a 3-SAT formula, we construct an instance of  

Decision-ILP. 

For each clause (e.g., (𝑥1 ∨ 𝑥2’ ∨ 𝑥3)) we create a linear constraint 

(e.g., 𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1). We further consider constraints 

0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 and that all variables are integers.
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 How hard is Decision-ILP?

 Claim: Decision-ILP is NP-complete.

 Proof: 
 Claim 1: Decision-ILP is in NP.

 Claim 2: 3-SAT ≤𝑝 Decision-ILP

 Proof idea: Given a 3-SAT formula, we construct an instance of Decision-
ILP. 
For each clause (e.g., (𝑥1 ∨ 𝑥2’ ∨ 𝑥3)) we create a linear constraint 
(e.g., 𝑥1 + 1 − 𝑥2 + 𝑥3 ≥ 1). We further consider constraints 
0 ≤ 𝑥1, … , 𝑥𝑛 ≤ 1 and that all variables are integers.

 Formulating problems as an ILP is a standard way of solving many 
combinatorial problems. 

 Example: Maximum Independent set. 

 Consider a 0 − 1 variable for each vertex, 1 denoting inclusion. For 
each edge (𝑥, 𝑦), there is a constraint that 𝑥 + 𝑦 ≤ 1.
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Linear Programming

Solving problems by formulating as Linear Programs



Linear Programming: Applications

 We saw how some combinatorial problems can be 

formulated as an Integer Linear Programming (ILP) 

problem. 

 Unfortunately, ILP is hard.

 A number of problems can be formulated as a Linear 

Programming problem and we know there is a polynomial 

time algorithm for LP.

 Some interesting applications: 

 Shortest 𝑠 − 𝑡 path in a directed graph with non-negative 

weights.

 Maximum flow in a network graph. 
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 Problem (Maximum 𝑠 − 𝑡 flow): Given a network graph 

𝐺 = (𝑉, 𝐸) with special source 𝑠 and sink 𝑡, find the 

maximum value of an 𝑠 − 𝑡 flow in the graph. 

 Let  𝑚 = |𝐸|. We use 𝑚 variables, one for each edge. 

 For an edge (𝑢, 𝑣), we will use variable 𝑓𝑢𝑣 to denote the 

flow along the edge (𝑢, 𝑣).
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 Problem (Maximum 𝑠 − 𝑡 flow): Given a network graph 

𝐺 = (𝑉, 𝐸) with special source 𝑠 and sink 𝑡, find the 

maximum value of an 𝑠 − 𝑡 flow in the graph. 

 Let  𝑚 = |𝐸|. We use 𝑚 variables, one for each edge. 

 For an edge (𝑢, 𝑣), we will use variable 𝑓𝑢𝑣 to denote the 
flow along the edge (𝑢, 𝑣).

 We construct the following LP given 𝐺.

 Maximize 

 Subject to,

 𝑓𝑢𝑣 ≤ 𝑐(𝑢, 𝑣), for all (𝑢, 𝑣) in 𝐸.

 , for all 𝑢 in 𝑉 − {𝑠, 𝑡}.

 𝑓𝑢𝑣 ≥ 0.
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Linear Programming: Applications

 Problem (Shortest 𝑠 − 𝑡 path): Given a weighted, directed 

graph 𝐺 = (𝑉, 𝐸). Find the length of the shortest path from 

vertex 𝑠 to vertex 𝑡.
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 Problem (Shortest 𝑠 − 𝑡 path): Given a weighted, directed 

graph 𝐺 = (𝑉, 𝐸). Find the length of the shortest path from 

vertex 𝑠 to vertex 𝑡.

 Let  𝑛 = |𝑉|. We use 𝑛 variables, one for each vertex. 

 For a vertex 𝑣, we will use variable 𝑑𝑣 to denote the length 

of the shortest path from vertex 𝑠 to vertex 𝑣.
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 Problem (Shortest 𝑠 − 𝑡 path): Given a weighted, directed 

graph 𝐺 = (𝑉, 𝐸). Find the length of the shortest path from 

vertex 𝑠 to vertex 𝑡.

 Let  𝑛 = |𝑉|. We use 𝑛 variables, one for each vertex. 

 For a vertex 𝑣, we will use variable 𝑑𝑣 to denote the length 

of the shortest path from vertex 𝑠 to vertex 𝑣.

 We construct the following LP given 𝐺.

 Maximize 𝑑𝑡, 

 subject to:

 For all edges 𝑢, 𝑣 ∈ 𝐸, 𝑑𝑣 ≤ 𝑑𝑢 + 𝑤(𝑢, 𝑣).

 𝑑𝑠 = 0.
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