CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Topics

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flow
- Computational intractability
- Other topics: Linear Programming

Linear Programming

Linear Programming: Introduction

- A large class of optimization problems in which the constraints and optimization criterion are linear functions.
- A Linear Programming $(\boldsymbol{L P})$ problem consists of assigning real values to variables such that these variables

1. (Linear constraints) satisfy a set of linear equalities or inequalities, and
2. (Objective function) maximize or minimize a given linear objective function.

Linear Programming: Introduction

- Example: A cottage industry makes two kinds of products P_{1} and P_{2}. The daily demand for P_{1} is 100 and the daily demand for P_{2} is 200 . The total amount of items that the industry can produce in a day is 250 . The industry makes profit of $R s .1$ per unit item of type P_{1} and $R s .5$ per unit item of type P_{2}. How many items of P_{1} and P_{2} should the industry produce to make maximum amount of profit?
- Let x_{1} be a variable denoting the amount of P_{1} items produced by the industry and x_{2} the mount of P_{2} items.
- The goal is to maximize the linear objective function:

$$
1 \cdot x_{1}+5 \cdot x_{2}
$$

under the linear constraints:

$$
x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 100, x_{2} \leq 200, x_{1}+x_{2} \leq 250
$$

Linear Programming: Introduction

- Problem(LP): Maximize the linear objective function:

$$
1 \cdot x_{1}+5 \cdot x_{2}
$$

under the linear constraints:
$x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 100, x_{2} \leq 200, x_{1}+x_{2} \leq 250$

Linear Programming: Introduction

- Given a Linear Programming problem, we will use the following definitions:
- Feasible solution: An assignment to the variables that satisfy all the linear constraints.
- Example: $x_{1}=50, x_{2}=100$ is a feasible solution.

Linear Programming: Introduction

- Question: Does a Linear Programming problem always have a feasible solution?

Linear Programming: Introduction

- Question: Does a Linear Programming problem always have a feasible solution?
- Not necessarily. Suppose the linear constraints are

$$
\begin{aligned}
& x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 100, x_{2} \leq 200 \\
& x_{1}+x_{2} \leq 250, x_{1}+10 \cdot x_{2} \geq 3000
\end{aligned}
$$

Linear Programming: Introduction

- Question: Does a Linear Programming problem always have a feasible solution?
- Not necessarily. Suppose the linear constraints are

$$
\begin{aligned}
& x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 100, x_{2} \leq 200 \\
& x_{1}+x_{2} \leq 250, x_{1}+10 \cdot x_{2} \geq 3000
\end{aligned}
$$

Linear Programming: Introduction

- Infeasible LP: A linear program is said to be infeasible if there are no feasible solutions.

Linear Programming: Introduction

- Unbounded LP: A linear program is said to be unbounded if it is possible to achieve arbitrarily high values of the objective function.
- Example: Maximize $\left(x_{1}+5 \cdot x_{2}\right)$ subject to $x_{1} \geq 0, x_{2} \geq 0, x_{2} \leq 200$.

Linear Programming: Introduction

- Claim: For any linear program that is not infeasible and unbounded, the objective function value is maximized at one of the vertices of the feasible region.

Linear Programming: Introduction

- Naïve idea for solving an LP:
- Try all possible vertex of the feasible region and return the one that maximizes the objective function.

Linear Programming: Introduction

- Naïve idea for solving an LP:
- Try all possible vertex of the feasible region and return the one that maximizes the objective function.
- Suppose the LP has n variables and $m=O(n)$ constraints. How many vertices can the feasible region have in worst case?

Linear Programming: Introduction

- Naïve idea for solving an LP:
- Try all possible vertex of the feasible region and return the one that maximizes the objective function.
- Suppose the LP has n variables and $m=O(n)$ constraints. How many vertices can the feasible region have in worst case?
- Exponentially many! Consider the LP: maximize ($x_{1}+x_{2}+\cdots+x_{n}$) subject to $0 \leq x_{1}, x_{2}, \ldots, x_{n} \leq 1$.

Linear Programming: Introduction

- Claim:There is an algorithm that solves any linear programming problem instance that runs in polynomial time.

Linear Programming: Introduction

- Claim:There is an algorithm that solves any linear programming problem instance that runs in polynomial time.
- The optimal solution may assign real numbers to some variables even though all of the constraints of objective function involve integers.

Linear Programming: Introduction

- Claim:There is an algorithm that solves any linear programming problem instance that runs in polynomial time.
- The optimal solution may assign real numbers to some variables even though all of the constraints of objective function involve integers.
- Suppose in addition to the linear constraint, we add another constraint that all the variables should be integers. Such linear programs are called Integer Linear Programs (ILP).
- Integer Linear Program(ILP): Consists of
- Linear objective function
- Linear constraints.
- All variables should be integers.

Decision-ILP: Given the above and an integer k, determine if there is an integer assignment to the variables such that the objective function value is at least k.

Linear Programming: Introduction

- How hard is Decision-ILP?

Linear Programming: Introduction

- How hard is Decision-ILP?
- Claim: Decision-ILP is NP-complete.
- Proof:
- Claim 1: Decision-ILP is in NP.
- Claim 2: 3-SAT \leq_{p} Decision-ILP

Linear Programming: Introduction

- How hard is Decision-ILP?
- Claim: Decision-ILP is NP-complete.
- Proof:
- Claim 1: Decision-ILP is in NP.
- Claim 2: 3-SAT \leq_{p} Decision-ILP
- Proof idea: Given a 3-SAT formula, we construct an instance of Decision-ILP.
For each clause (e.g., $\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right)$) we create a linear constraint (e.g., $x_{1}+1-x_{2}+x_{3} \geq 1$). We further consider constraints $0 \leq x_{1}, \ldots, x_{n} \leq 1$ and that all variables are integers.

Linear Programming: Introduction

- How hard is Decision-ILP?
- Claim: Decision-ILP is NP-complete.
- Proof:
- Claim 1: Decision-ILP is in NP.
- Claim 2: 3-SAT \leq_{p} Decision-ILP
- Proof idea: Given a 3-SAT formula, we construct an instance of DecisionILP.
For each clause (e.g., $\left.\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right)\right)$ we create a linear constraint (e.g., $x_{1}+1-x_{2}+x_{3} \geq 1$). We further consider constraints $0 \leq x_{1}, \ldots, x_{n} \leq 1$ and that all variables are integers.
- Formulating problems as an ILP is a standard way of solving many combinatorial problems.
- Example: Maximum Independent set.
- Consider a $0-1$ variable for each vertex, 1 denoting inclusion. For each edge (x, y), there is a constraint that $x+y \leq 1$.

Linear Programming

Solving problems by formulating as Linear Programs

Linear Programming: Applications

- We saw how some combinatorial problems can be formulated as an Integer Linear Programming (ILP) problem.
- Unfortunately, ILP is hard.
- A number of problems can be formulated as a Linear Programming problem and we know there is a polynomial time algorithm for LP.
- Some interesting applications:
- Shortest $s-t$ path in a directed graph with non-negative weights.
- Maximum flow in a network graph.

Linear Programming: Applications

- Problem (Maximum $S-t$ flow): Given a network graph $G=(V, E)$ with special source S and $\operatorname{sink} t$, find the maximum value of an $S-t$ flow in the graph.
- Let $m=|E|$. We use m variables, one for each edge.
- For an edge (u, v), we will use variable $f_{u v}$ to denote the flow along the edge (u, v).

Linear Programming: Applications

- Problem (Maximum $S-t$ flow): Given a network graph $G=(V, E)$ with special source S and $\operatorname{sink} t$, find the maximum value of an $s-t$ flow in the graph.
- Let $m=|E|$. We use m variables, one for each edge.
- For an edge (u, v), we will use variable $f_{u v}$ to denote the flow along the edge (u, v).
- We construct the following LP given G.
- Maximize $\sum f_{s v}$
- Subject to, ${ }^{(s, v) \in E}$
- $f_{u v} \leq c(u, v)$, for all (u, v) in E.
- $\sum_{(v, u) \in E} f_{v u}=\sum_{(u, v) \in E} f_{u v}$, for all u in $V-\{s, t\}$.
- $f_{u v} \geq 0$.

Linear Programming: Applications

- Problem (Shortest $S-t$ path): Given a weighted, directed graph $G=(V, E)$. Find the length of the shortest path from vertex S to vertex t.

Linear Programming: Applications

- Problem (Shortest $S-t$ path): Given a weighted, directed graph $G=(V, E)$. Find the length of the shortest path from vertex S to vertex t.
- Let $n=|V|$. We use n variables, one for each vertex.
- For a vertex v, we will use variable d_{v} to denote the length of the shortest path from vertex S to vertex v.

Linear Programming: Applications

- Problem (Shortest $S-t$ path): Given a weighted, directed graph $G=(V, E)$. Find the length of the shortest path from vertex S to vertex t.
- Let $n=|V|$. We use n variables, one for each vertex.
- For a vertex v, we will use variable d_{v} to denote the length of the shortest path from vertex S to vertex v.
- We construct the following LP given G.
- Maximize d_{t},
- subject to:
- For all edges $(u, v) \in E, d_{v} \leq d_{u}+w(u, v)$.
- $d_{s}=0$.

End

