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Computational Intractability: NP-complete problems

 Problem(3-D matching): Given disjoint sets 𝑋, 𝑌, and 𝑍 each of 

size 𝑛, and given a set 𝑇 of triples (𝑥, 𝑦, 𝑧), determine if there 

exist a subset of 𝑛 triples in 𝑇 such that each element of 𝑋 ∪ 𝑌 ∪
𝑍 is contained in exactly one of these triples.
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𝑇 = {(𝑎, 𝑥, 𝑝), (𝑎, 𝑦, 𝑝), (𝑏, 𝑦, 𝑞), (𝑐, 𝑧, 𝑟)}

Triple (𝑎, 𝑥, 𝑝)



Computational Intractability: NP-complete problems

 Problem(3-D matching): Given disjoint sets 𝑋, 𝑌, and 𝑍 each of 

size 𝑛, and given a set 𝑇 of triples (𝑥, 𝑦, 𝑧), determine if there 

exist a subset of 𝑛 triples in 𝑇 such that each element of 𝑋 ∪ 𝑌 ∪
𝑍 is contained in exactly one of these triples.

 Claim 1: 3-D matching is in NP.

 Claim 2: 3-D matching is NP-complete.

 Claim 2.1: 3-SAT ≤𝑝 3-D matching.

 Proof: We will show an efficient many-one reduction. 



Computational Intractability: NP-complete problems

 Example construction for (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3’)
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Computational Intractability: NP-complete problems

 Example construction for (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3’)

𝑛 − 1 ⋅ 𝑘 pairs

𝑘 denotes the number of Clauses

New elements

Elements from 

the previous slide



Computational Intractability

NP-Complete problems: Subset-sum



Computational Intractability: NP-complete problems

 Problem(Subset-sum): Given natural numbers 𝑤1, … , 𝑤𝑛

and a target number 𝑊, determine if there is a subset of 

{𝑤1, … , 𝑤𝑛} that adds up to precisely 𝑊.

 Claim 1: Subset-sum is in NP.

 Claim: Subset-sum is NP-complete.

 Claim 2.1: 3-D matching ≤𝑝 Subset-sum.

 Proof idea:  We will show an efficient many-one 

reduction. Given an instance (𝑋, 𝑌, 𝑍, 𝑇) of the 3-D 

matching problem, we construct an instance of the 

Subset-sum problem.



Computational Intractability: NP-complete problems

 Claim 1: Subset-sum matching is in NP.

 Claim: Subset-sum is NP-complete.

 Claim 2.1: 3-D matching ≤𝑃 Subset-sum.

 Proof idea:  We will show an efficient many-one reduction. 

Given an instance (𝑋, 𝑌, 𝑍, 𝑇) of the 3-D matching 

problem, we construct an instance of the Subset-sum 

problem.

 We construct a 3𝑛 bit vector. Given a triple 

𝑡𝑖 = (𝑥1, 𝑦3, 𝑧5) we construct the following vector 𝑣𝑖:

1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Computational Intractability: NP-complete problems

 Claim: Subset-sum is NP-complete.

 Claim 2.1: 3-D matching ≤𝑝 Subset-sum.

 Proof idea:  Given an instance (𝑋, 𝑌, 𝑍, 𝑇) of the 3-D 

matching problem, we construct an instance of the Subset-

sum problem.

 We construct a 3𝑛 bit vector. Given a triple 

𝑡𝑖 = (𝑥1, 𝑦3, 𝑧5) we construct the following vector 𝑣𝑖:

1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Let 𝑤𝑖 be the value of 𝑣𝑖 in base (|𝑇| + 1) and let
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Computational Intractability: NP-complete problems

 Claim: Subset-sum is NP-complete.

 Claim 2.1: 3-D matching ≤𝑝 Subset-sum.

 Proof idea:  Given an instance (𝑋, 𝑌, 𝑍, 𝑇) of the 3-D 

matching problem, we construct an instance of the 

Subset-sum problem.

 Let 𝑤𝑖 be the value of 𝑣𝑖 in base (|𝑇| + 1) and let

 Claim: There is a 3-D matching if and only if there is 

a subset of {𝑤1, … , 𝑤|𝑇|} that sums to 𝑊.
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Computational Intractability

Complexity Classes



Computational Intractability: Complexity Classes

 NP: All problems 𝑋 such that there is an efficient certifier for 

𝑋. 

 Efficient certifier: There is an efficient certifier 𝐵(. , . ) such that 

 for all yes instances 𝑠 of 𝑋, there is a short certificate 𝑡 such that 

𝐵(𝑠, 𝑡)=“yes” ,and 

 for all “no” instances 𝑠 of 𝑋, there is no short string 𝑡 such that 

𝐵(𝑠, 𝑡)=“yes”.

 Example 1: Consider 3-SAT. If the formula is satisfiable, then 

there is a short certificate of this fact. Is there a short certificate 

showing that a formula is unsatisfiable?

 Example 2: Consider 3-coloring. Is there a short certificate of 

the fact that there is no possible 3 coloring of the given graph?



Computational Intractability: Complexity Classes

 co-NP:A problem 𝑋 is in co-NP if and only if the problem 

𝑋’ is in NP.

 𝑋’: Complement of 𝑋.

 Examples of co-NP problems: 

 UNSAT: Given a formula, determine if the formula is 

unsatisfiable.

 TAUTOLOGY: Given a formula, determine if it is a tautology.

 NO-Hamiltonian-cycle: Given a graph, determine if there is no 

hamiltonian cycle in the graph.



Computational Intractability: Complexity Classes

 Question: Is NP = co-NP?
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 Not known but the popular belief is that they are not equal. 

 Theorem: If NP ≠ co-NP, then P ≠ NP.
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Computational Intractability: Complexity Classes

 Question: Is NP = co-NP?

 Not known but the popular belief is that they are not equal. 

 Theorem: If NP ≠ co-NP, then P ≠ NP.

 Proof idea: P is closed under complementation.

 Question: Are there problems in NP intersect co-NP that 

are not in P? 
 FACTOR is in NP intersect co-NP but it is not known to be in P.

 There is mixed feeling about this question.
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NP-complete co-NP-complete

FACTOR



Computational Intractability: Complexity Classes

 FACTOR: Given two integers 𝑥 and 𝑦, is there a non-trivial 

factor of 𝑥 that is less than 𝑦.
 FACTOR is in NP:

 FACTOR is in co-NP:

P
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NP-complete co-NP-complete
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Computational Intractability: Complexity Classes

 FACTOR: Given two integers 𝑥 and 𝑦, is there a non-trivial 

factor of 𝑥 that is less than 𝑦.
 FACTOR is in NP: The non-trivial factor of 𝑥 less than 𝑦 acts as a certificate.

 FACTOR is in co-NP: The prime factorization of 𝑥 acts as a certificate.

P

co-NPNP

NP-complete co-NP-complete

FACTOR



Computational Intractability: Complexity Classes

 PSPACE: The set of all problems that can be solved using 

polynomial amount of space.
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 PSPACE: The set of all problems that can be solved using 

polynomial amount of space.

 Theorem: PSPACE contains P.
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Computational Intractability: Complexity Classes

 PSPACE: The set of all problems that can be solved using 

polynomial amount of space.

 Theorem: PSPACE contains P.

 Proof idea: You cannot use more than polynomial space in 

polynomial time.

P

co-NPNP

NP-complete co-NP-complete

FACTOR
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 PSPACE: The set of all problems that can be solved using 

polynomial amount of space.
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Computational Intractability: Complexity Classes

 PSPACE: The set of all problems that can be solved using 

polynomial amount of space.

 Theorem: PSPACE contains P.

 Theorem: PSPACE contains NP.

 Proof idea: 3-SAT can be solved in polynomial space and for all 

problems 𝑋 in NP, X ≤𝑝 3-SAT.

P

co-NPNP

NP-complete co-NP-complete

FACTOR



Computational Intractability: Complexity Classes

 PSPACE: The set of all problems that can be solved using 

polynomial amount of space.

 Theorem: PSPACE contains P.

 Theorem: PSPACE contains NP.

 Theorem: PSPACE contains co-NP.
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Computational Intractability: Complexity Classes

 Question: Are there problems in PSPACE that are not in 

simpler classes?

 There are PSPACE-complete problems that are the hardest 

problems in PSPACE are not known to be in simpler classes. 
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Computational Intractability: Complexity Classes

 PSPACE-complete: A problem 𝑋 is PSPACE-complete if

1. 𝑋 is in PSPACE.

2. For all 𝑌 in PSPACE, 𝑌 ≤𝑝 𝑋.

 Question: Are there natural problems that are PSPACE-
complete?
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Computational Intractability: Complexity Classes

 Problem(Quantified-SAT):Given a quantified boolean

formula ,

determine if the formula is true.

 This captures 2-player games.

 Theorem: QSAT is PSPACE-complete.
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Computational Intractability: Complexity Classes

 Problem(Quantified-SAT):Given a quantified boolean
formula ,
determine if the formula is true.

 This captures 2-player games.

 Theorem: QSAT is PSPACE-complete. 
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