CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Computational Intractability: NP-complete problems

- Problem(3-D matching): Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup$ Z is contained in exactly one of these triples.
a

$$
\text { Triple }(a, x, p)
$$

$$
T=\{(a, x, p),(a, y, p),(b, y, q),(c, z, r)\}
$$

Computational Intractability: NP-complete problems

- Problem(3-D matching): Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup$ Z is contained in exactly one of these triples.
- Claim 1: 3-D matching is in NP.
- Claim 2: 3-D matching is NP-complete.
- Claim 2.1: 3-SAT \leq_{p} 3-D matching.
- Proof: We will show an efficient many-one reduction.

Computational Intractability: NP-complete problems

Computational Intractability: NP-complete problems

- Example construction for $\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2} \vee x_{3}{ }^{\prime}\right)$

Elements from
the previous slide

k denotes the number of Clauses

Computational Intractability

NP-Complete problems: Subset-sum

Computational Intractability: NP-complete problems

- Problem(Subset-sum): Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset of $\left\{w_{1}, \ldots, w_{n}\right\}$ that adds up to precisely W.
- Claim 1: Subset-sum is in NP.
- Claim: Subset-sum is NP-complete.
- Claim 2.1: 3-D matching \leq_{p} Subset-sum.
- Proof idea: We will show an efficient many-one reduction. Given an instance (X, Y, Z, T) of the 3-D matching problem, we construct an instance of the Subset-sum problem.

Computational Intractability: NP-complete problems

- Claim 1: Subset-sum matching is in NP.
- Claim: Subset-sum is NP-complete.
- Claim 2.1: 3-D matching \leq_{P} Subset-sum.
- Proof idea: We will show an efficient many-one reduction. Given an instance (X, Y, Z, T) of the 3-D matching problem, we construct an instance of the Subset-sum problem.
- We construct a $3 n$ bit vector. Given a triple $t_{i}=\left(x_{1}, y_{3}, z_{5}\right)$ we construct the following vector v_{i} :

Computational Intractability: NP-complete problems

- Claim: Subset-sum is NP-complete.
- Claim 2.1: 3-D matching \leq_{p} Subset-sum.
- Proof idea: Given an instance (X, Y, Z, T) of the 3-D matching problem, we construct an instance of the Subsetsum problem.
- We construct a $3 n$ bit vector. Given a triple $t_{i}=\left(x_{1}, y_{3}, z_{5}\right)$ we construct the following vector v_{i} :

1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0

- Let w_{i} be the value of v_{i} in base $(|T|+1)$ and let

$$
W=\sum_{i=0}^{3 n-1}(|T|+1)^{i}
$$

Computational Intractability: NP-complete problems

- Claim: Subset-sum is NP-complete.
- Claim 2.1: 3-D matching \leq_{p} Subset-sum.
- Proof idea: Given an instance (X, Y, Z, T) of the 3-D matching problem, we construct an instance of the Subset-sum problem.
- Let w_{i} be the value of v_{i} in base $(|T|+1)$ and let $W=\sum_{i=0}^{3 n-1}(|T|+1)^{i}$
- Claim: There is a 3-D matching if and only if there is a subset of $\left\{w_{1}, \ldots, w_{|T|}\right\}$ that sums to W.

Computational Intractability

Complexity Classes

Computational Intractability: Complexity Classes

- NP: All problems X such that there is an efficient certifier for X.
- Efficient certifier: There is an efficient certifier $B(.,$.$) such that$
- for all yes instances S of X, there is a short certificate t such that $B(s, t)=$ "yes" , and
- for all "no" instances S of X, there is no short string t such that $B(s, t)=" y e s "$.
- Example 1: Consider 3-SAT. If the formula is satisfiable, then there is a short certificate of this fact. Is there a short certificate showing that a formula is unsatisfiable?
- Example 2: Consider 3-coloring. Is there a short certificate of the fact that there is no possible 3 coloring of the given graph?

Computational Intractability: Complexity Classes

- co-NP:A problem X is in co-NP if and only if the problem X^{\prime} is in NP.
- \underline{X} : Complement of \underline{X}.
- Examples of co-NP problems:
- UNSAT: Given a formula, determine if the formula is unsatisfiable.
- TAUTOLOGY: Given a formula, determine if it is a tautology.
- NO-Hamiltonian-cycle: Given a graph, determine if there is no hamiltonian cycle in the graph.

Computational Intractability: Complexity Classes

- Question: Is NP = co-NP?

Computational Intractability: Complexity Classes

- Question: Is NP = co-NP?
- Not known but the popular belief is that they are not equal.
- Theorem: If $\mathbf{N P} \neq \mathbf{c o}-\mathbf{N P}$, then $\mathbf{P} \neq \mathbf{N P}$.

Computational Intractability: Complexity Classes

- Question: Is NP = co-NP?
- Not known but the popular belief is that they are not equal.
- Theorem: If $\mathbf{N P} \neq \mathbf{c o}-\mathbf{N P}$, then $\mathbf{P} \neq \mathbf{N P}$.
- Proof idea: \mathbf{P} is closed under complementation.

Computational Intractability: Complexity Classes

- Question: Is NP = co-NP?
- Not known but the popular belief is that they are not equal.
- Theorem: If $\mathbf{N P} \neq \mathbf{c o}-\mathbf{N P}$, then $\mathbf{P} \neq \mathbf{N P}$.
- Proof idea: \mathbf{P} is closed under complementation.
- Question: Are there problems in NP intersect co-NP that are not in \mathbf{P} ?

Computational Intractability: Complexity Classes

- Question: Is NP = co-NP?
- Not known but the popular belief is that they are not equal.
- Theorem: If $\mathbf{N P} \neq \mathbf{c o}-\mathbf{N P}$, then $\mathbf{P} \neq \mathbf{N P}$.
- Proof idea: \mathbf{P} is closed under complementation.
- Question: Are there problems in NP intersect co-NP that are not in \mathbf{P} ?
- FACTOR is in NP intersect co-NP but it is not known to be in \mathbf{P}.
- There is mixed feeling about this question.

Computational Intractability: Complexity Classes

- FACTOR: Given two integers x and y, is there a non-trivial factor of x that is less than y.
- FACTOR is in NP:
- FACTOR is in co-NP:

Computational Intractability: Complexity Classes

- FACTOR: Given two integers x and y, is there a non-trivial factor of x that is less than y.
- FACTOR is in NP: The non-trivial factor of x less than y acts as a certificate.
- FACTOR is in co-NP: The prime factorization of x acts as a certificate.

Computational Intractability: Complexity Classes

- PSPACE: The set of all problems that can be solved using polynomial amount of space.

Computational Intractability: Complexity Classes

- PSPACE: The set of all problems that can be solved using polynomial amount of space.
- Theorem: PSPACE contains P.

Computational Intractability: Complexity Classes

- PSPACE: The set of all problems that can be solved using polynomial amount of space.
- Theorem: PSPACE contains P.
- Proof idea: You cannot use more than polynomial space in polynomial time.

Computational Intractability: Complexity Classes

- PSPACE: The set of all problems that can be solved using polynomial amount of space.
- Theorem: PSPACE contains P.
- Theorem: PSPACE contains NP.

Computational Intractability: Complexity Classes

- PSPACE: The set of all problems that can be solved using polynomial amount of space.
- Theorem: PSPACE contains P.
- Theorem: PSPACE contains NP.
- Proof idea: 3-SAT can be solved in polynomial space and for all problems X in NP, $\mathrm{X} \leq_{p} 3$-SAT.

Computational Intractability: Complexity Classes

- PSPACE: The set of all problems that can be solved using polynomial amount of space.
- Theorem: PSPACE contains P.
- Theorem: PSPACE contains NP.
- Theorem: PSPACE contains co-NP.

Computational Intractability: Complexity Classes

- Question: Are there problems in PSPACE that are not in simpler classes?
- There are PSPACE-complete problems that are the hardest problems in PSPACE are not known to be in simpler classes.

Computational Intractability: Complexity Classes

- PSPACE-complete: A problem X is PSPACE-complete if 1. X is in PSPACE.

2. For all Y in PSPACE, $Y \leq_{p} X$.

- Question: Are there natural problems that are PSPACEcomplete?

Computational Intractability: Complexity Classes

- Problem(Quantified-SAT):Given a quantified boolean formula $\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \forall x_{n-1} \exists x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$, determine if the formula is true.
- This captures 2-player games.
- Theorem: QSAT is PSPACE-complete.

Computational Intractability: Complexity Classes

- Problem(Quantified-SAT):Given a quantified boolean formula $\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \forall x_{n-1} \exists x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$, determine if the formula is true.
- This captures 2-player games.
- Theorem: QSAT is PSPACE-complete.

End

