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Computational Intractability

NP-complete problems: 𝑘-COLORING



 Problem (𝑘-coloring): Given a graph 𝐺, determine if 𝐺 is 

𝑘-colorable.

 𝑘-colorable: A graph is said to be 𝑘 colorable if it is possible to assign 

one of 𝑘 colors to each node such that for every edge (𝑢, 𝑣), 𝑢 and 𝑣
are assigned different colors.
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𝑘-colorable.

 𝑘-colorable: A graph is said to be 𝑘 colorable if it is possible to assign 

one of 𝑘 colors to each node such that for every edge (𝑢, 𝑣), 𝑢 and 𝑣
are assigned different colors.
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 Problem (2-coloring): Given a graph 𝐺, determine if 𝐺 is 

2-colorable.

 How hard is this problem?
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 Problem (2-coloring): Given a graph 𝐺, determine if 𝐺 is 

2-colorable.

 How hard is this problem?

 Claim: 𝐺 is 2-colorable if and only if 𝐺 is bipartite.

Computational Intractability: NP-complete problems



 Problem (3-coloring): Given a graph 𝐺, determine if 𝐺 is 

3-colorable.

 Claim 1: 3-coloring is NP-complete.

 Claim 1.1: 3-coloring is in NP.

 Claim 1.2: 3-SAT ≤𝑝 3-coloring.
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 Claim 1.2: 3-SAT ≤𝑝 3-coloring.
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 Encoding (𝑥1’ ∨ 𝑥2 ∨ 𝑥3)
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 Claim: There is no 3-coloring of the graph below with nodes 𝑥1’, 
𝑥2 and 𝑥3 assigned 𝐹 color.
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 Claim: There is a 3-coloring of the graph below with at least one 

of the nodes 𝑥1’, 𝑥2 and 𝑥3 assigned 𝑇 color.
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 𝑥1’: 𝑇, 𝑥2: 𝑇, 𝑥3: 𝑇.
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 Claim: The given formula is satisfiable if and only if the 

constructed graph has a 3 coloring.
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Computational Intractability

NP-complete problems: SCHEDULING



 Problem(Subset-Sum): Given natural numbers 𝑤1, … , 𝑤𝑛 and a 

target number 𝑊, determine if there is a subset of {𝑤1, … , 𝑤𝑛}
that adds up to precisely 𝑊.

 Problem(Scheduling): Given 𝑛 jobs with start time 𝑠𝑖 and duration 

𝑡𝑖 and deadline 𝑑𝑖, determine if all the jobs can be scheduled on a 

single machine such that no deadlines are missed.

 Claim 1: Subset-sum and Scheduling are in NP.

 Claim 2:  Subset-sum ≤𝑝 Scheduling.
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 Problem(Subset-Sum): Given natural numbers 𝑤1, … , 𝑤𝑛 and a 

target number 𝑊, determine if there is a subset of {𝑤1, … , 𝑤𝑛}
that adds up to precisely 𝑊.

 Problem(Scheduling): Given 𝑛 jobs with start time 𝑠𝑖 and duration 

𝑡𝑖 and deadline 𝑑𝑖, determine if all the jobs can be scheduled on a 

single machine such that no deadlines are missed.

 Claim 1: Subset-sum and Scheduling are in NP.

 Claim 2:  Subset-sum ≤𝑝 Scheduling.

 Proof idea: Given an instance of the subset sum problem 

({𝑤1, … ,𝑤𝑛}, 𝑊), we construct the following instance of the 

Scheduling problem: ((0, 𝑤1, 𝑆 + 1), … , (0, 𝑤𝑛, 𝑆 + 1), (𝑊, 1,𝑊 + 1)). 

We then argue that there is a subset that sums to 𝑊 if and only if the 

(𝑛 + 1) jobs can be scheduled. Here 𝑆 = 𝑤1 +⋯+𝑤𝑛.
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Computational Intractability

NP and NP-completeness



Computational intractability: Many-one 

reduction
 Suppose we want to show 𝑋 ≤𝑝 𝑌. 

 Many-one reduction: Design an efficient mapping 𝑓 from the 
set of instances of 𝑋 to set of instances of 𝑌 such that 𝑠 is in 𝑋 if 
and only if 𝑓(𝑠) is in 𝑌.
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 Problem(3-D matching): Given disjoint sets 𝑋, 𝑌, and 𝑍 each of 

size 𝑛, and given a set 𝑇 of triples (𝑥, 𝑦, 𝑧), determine if there 

exist a subset of 𝑛 triples in 𝑇 such that each element of 𝑋 ∪ 𝑌 ∪
𝑍 is contained in exactly one of these triples.
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𝑇 = {(𝑎, 𝑥, 𝑝), (𝑎, 𝑦, 𝑝), (𝑏, 𝑦, 𝑞), (𝑐, 𝑧, 𝑟)}

Triple (𝑎, 𝑥, 𝑝)
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 Problem(3-D matching): Given disjoint sets 𝑋, 𝑌, and 𝑍 each of 

size 𝑛, and given a set 𝑇 of triples (𝑥, 𝑦, 𝑧), determine if there 

exist a subset of 𝑛 triples in 𝑇 such that each element of 𝑋 ∪ 𝑌 ∪
𝑍 is contained in exactly one of these triples.

 Claim 1: 3-D matching is in NP.

 Claim 2: 3-D matching is NP-complete.

 Claim 2.1: 3-SAT ≤𝑝 3-D matching.

 Proof: We will show an efficient many-one reduction. 
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 Example construction for (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3’)
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 Example construction for (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3’)

𝑛 − 1 ⋅ 𝑘 pairs

𝑘 denotes the number of Clauses

New elements

Elements from 

the previous slide
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