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Computational Intractability

NP-complete problems: k-COLORING




Computational Intractability: NP-complete problems

® Problem ( k—coloring): Given a graph G, determine if G is
k -colorable.
e k-colorable: A graph is said to be k colorable if it is possible to assign

one of k colors to each node such that for every edge (U, V), U and v

are assigned different colors.




Computational Intractability: NP-complete problems

® Problem ( k—coloring): Given a graph G, determine if G is
k -colorable.
e k-colorable: A graph is said to be k colorable if it is possible to assign

one of k colors to each node such that for every edge (U, V), U and v

are assigned different colors.
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Computational Intractability: NP-complete problems

® Problem ( 2—Coloring): Given a graph G, determine if G is

2-colorable.

® How hard is this problem?
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Computational Intractability: NP-complete problems

® Problem ( 2—Coloring)z Given a graph G, determine if G is

2-colorable.
e How hard is this problem?

® Claim: G is 2-colorable if and only if G is bipartite.
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Computational Intractability: NP-complete problems

* Problem (3-coloring): Given a graph G, determine if G is

3-colorable.

e Claim 1: 3—Coloring is NP-complete.
® Claim 1.1: 3—coloring is in NP.
® Claim 1.2: 3-SAT Sp 3—coloring.
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Computational Intractability: NP-complete problems

e Claim 1.2: 3-SAT Sp 3—coloring.
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Computational Intractability: NP-complete problems

* Encoding (x;" V x, V x3)
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Computational Intractability: NP-complete problems

® Claim:There is no 3—coloring of the graph below with nodes x 1

X, and X assigned F color.
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Computational Intractability: NP-complete problems

® Claim:There is a 3—coloring of the graph below with at least one

of the nodes x,’, X, and x4 assigned T' color.
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Computational Intractability: NP-complete problems

e x,:T, x,:T, x;:T.
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Computational Intractability: NP-complete problems

o x.F x,:T.x:T.
1 » V2 » V3
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Computational Intractability: NP-complete problems

o x:T, x,:F, x5:T.
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Computational Intractability: NP-complete problems

e x,:T, x,:T, x5: F.
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Computational Intractability: NP-complete problems

o xF,x,;F x3:T.
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Computational Intractability: NP-complete problems

e x:T,x,:F, x3: F.
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Computational Intractability: NP-complete problems

e x.F x,:T. x,: F.
1 » V2 » V3
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Computational Intractability: NP-complete problems

® Claim:The given formula is satisfiable if and only if the

constructed graph hasa 3 coloring.
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Computational Intractability

NP-complete problems: SCHEDULING
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Computational Intractability: NP-complete problems

® Problem(Subset-Sum): Given natural numbers wy, ..., W, and a
target number W, determine if there is a subset of {w, ..., W, }
that adds up to precisely Ww.

* Problem(Scheduling): Given 1 jobs with start time §; and duration
t; and deadline d;, determine if all the jobs can be scheduled on a

single machine such that no deadlines are missed.

e (Claim 1: Subset-sum and Scheduling are in NP.

® Claim 2: Subset-sum Sp Scheduling.
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Computational Intractability: NP-complete problems

® Problem(Subset-Sum): Given natural numbers wy, ..., W, and a

target number W, determine if there is a subset of {w, ..., W, }
that adds up to precisely W'.

¢ Problem( Scheduling): Given N jobs with start time S; and duration

t; and deadline d;, determine if all the jobs can be scheduled on a

single machine such that no deadlines are missed.

e (Claim 1: Subset-sum and Scheduling are in NP.

® Claim 2: Subset-sum Sp Scheduling.

® Proof'idea: Given an instance of the subset sum problem
({Wq, ., W, }, W), we construct the following instance of the
Scheduling problem: ((0,wy, S +1),...,(0,w,, S + 1), (W, 1, W + 1)).
We then argue that there is a subset that sums to W if and only if the
(n + 1) jobs can be scheduled. Here S = w; + -+ w_,.
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Computational Intractability

NP and NP—completeness




Computational intractability: Many-one
reduction

* Suppose we want to show X Sp Y.

® Many-one reduction: Design an efficient mapping f from the

set of instances of X to set of instances of Y such that S is in X if

and only if f(s) isin Y.




Computational Intractability: NP-complete problems

* Problem(3-D matching): Given disjoint sets X, Y, and Z each of
size 1, and given a set T of triples (X, Y, Z), determine if there
exist a subset of 1 triples in T such that each element of X U Y U

/ is contained in exactly one of these triples.

° Triple (a, x, p)
@

T = {(a,x,p),(a,y,p), (b,y,q),(c,z,1)}
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Computational Intractability: NP-complete problems

* Problem(3-D matching): Given disjoint sets X, Y, and Z each of
size 1, and given a set T of triples (X, Yy, Z), determine if there
exist a subset of 1 triples in T such that each element of X U Y U

/ is contained in exactly one of these triples.

e Claim 1: 3-D matching is in NP.

e Claim 2: 3-D matching is NP-complete.
e Claim 2.1: 3-SAT Sp 3-D matching.

® Proof: We will show an efficient many-one reduction.
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Computational Intractability: NP-complete problems

 Example construction for (X; V x," V x3), (x;'V X,V x3')

=
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Computational Intractability: NP-complete problems

* Example construction for (x1 VX,V x3), (xl’ VX,V Xg’)

Elements from

the previous slide

New elements
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k denotes the number of Clauses
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