CSL 356: Analysis and Design of Algorithms

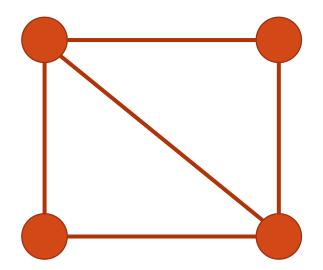
Ragesh Jaiswal

CSE, IIT Delhi

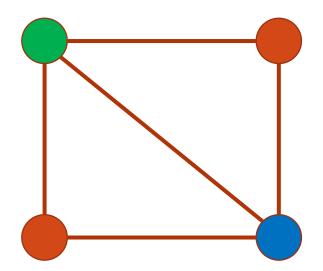
Computational Intractability

NP-complete problems: *k*-COLORING

- <u>Problem (k-coloring)</u>: Given a graph <u>G</u>, determine if <u>G</u> is k-colorable.
 - <u>*k*-colorable</u>: A graph is said to be <u>*k*</u> colorable if it is possible to assign one of *k* colors to each node such that for every edge (u, v), u and v are assigned different colors.



- <u>Problem (k-coloring)</u>: Given a graph <u>G</u>, determine if <u>G</u> is k-colorable.
 - <u>*k*-colorable</u>: A graph is said to be <u>*k*</u> colorable if it is possible to assign one of *k* colors to each node such that for every edge (u, v), u and v are assigned different colors.

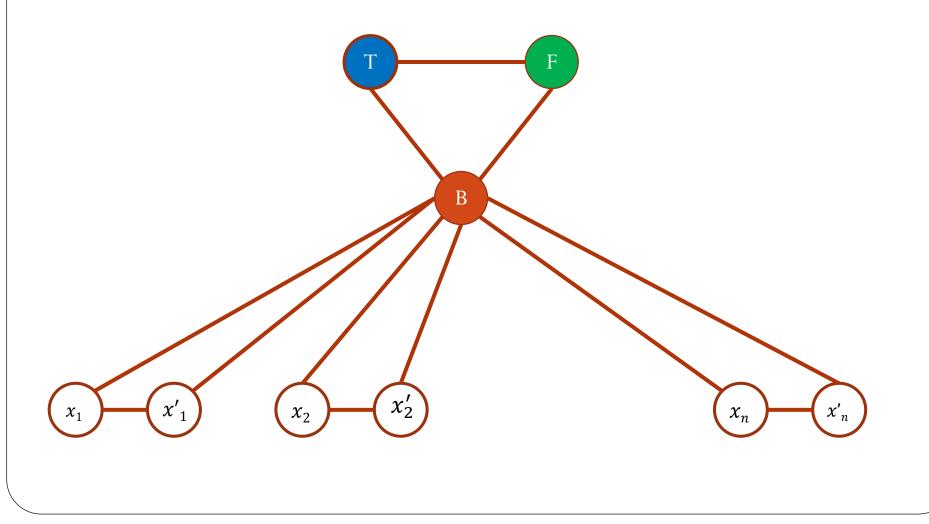


- <u>Problem (2-coloring)</u>: Given a graph <u>G</u>, determine if <u>G</u> is
 2-colorable.
- How hard is this problem?

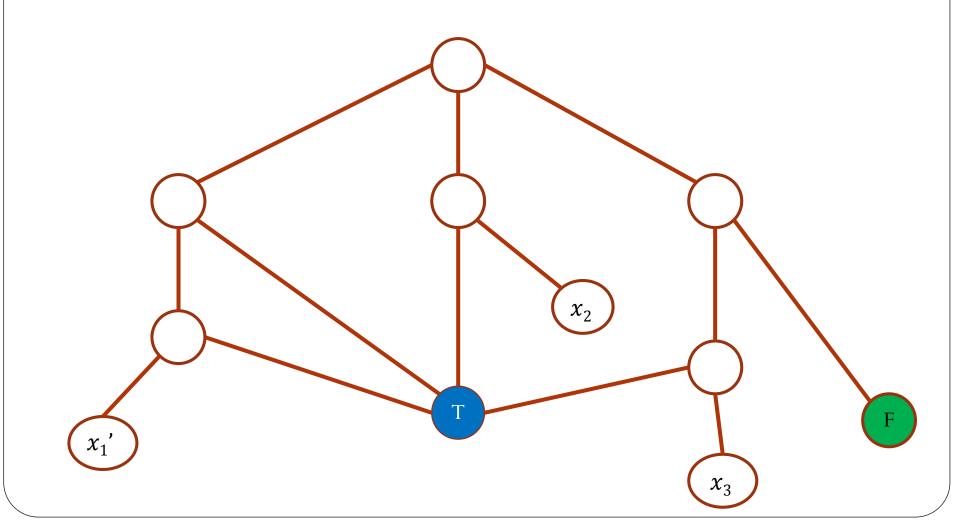
- <u>Problem (2-coloring)</u>: Given a graph <u>G</u>, determine if <u>G</u> is
 2-colorable.
- How hard is this problem?
- <u>Claim</u>: G is 2-colorable if and only if G is bipartite.

- <u>Problem (3-coloring)</u>: Given a graph <u>G</u>, determine if <u>G</u> is 3-colorable.
- <u>Claim 1</u>: **3**-coloring is **NP**-complete.
 - <u>Claim 1.1</u>: **3**-coloring is in **NP**.
 - <u>Claim 1.2</u>: 3-SAT \leq_p 3-coloring.

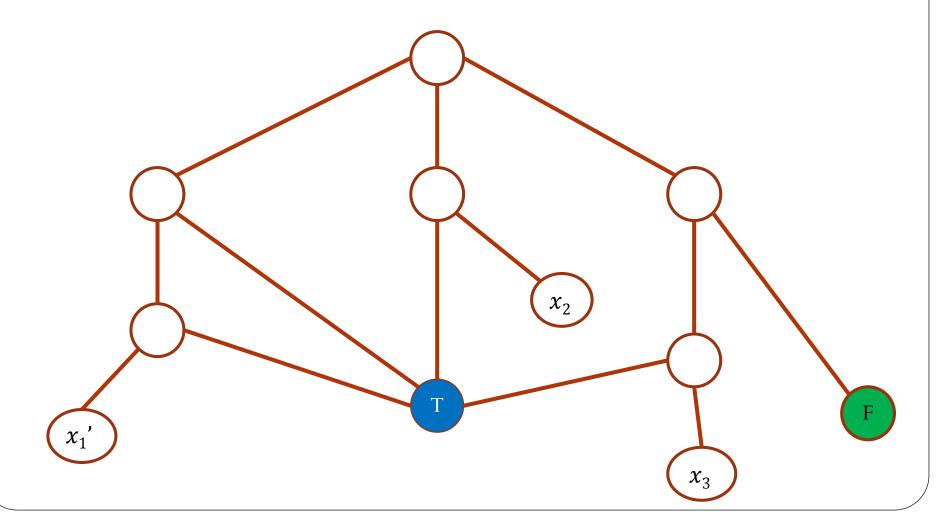
• <u>Claim 1.2</u>: 3-SAT $\leq_p 3$ -coloring.



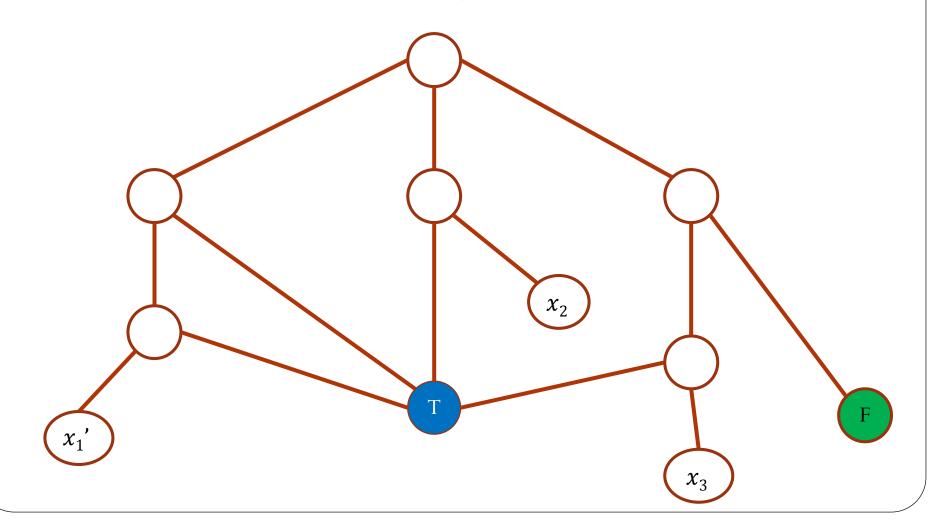
• Encoding $(x_1' \lor x_2 \lor x_3)$



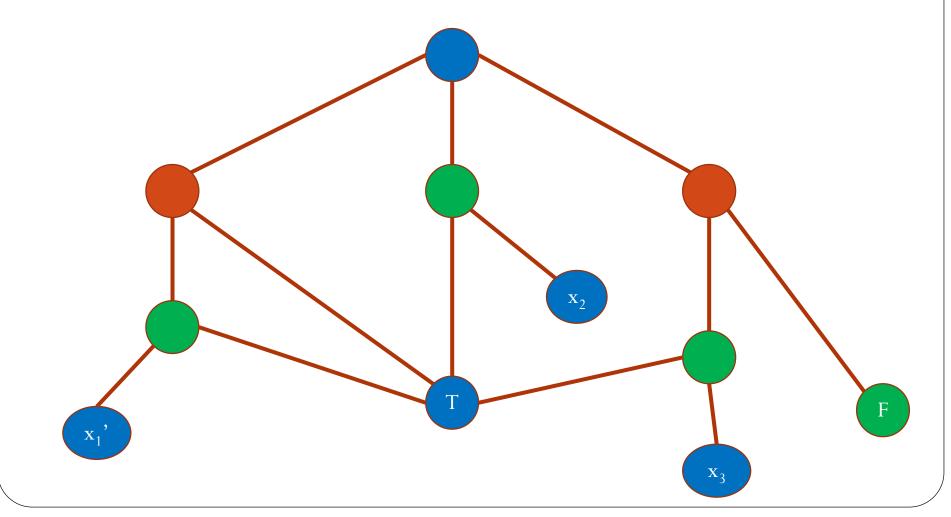
• <u>Claim</u>: There is no 3-coloring of the graph below with nodes x_1' , x_2 and x_3 assigned F color.



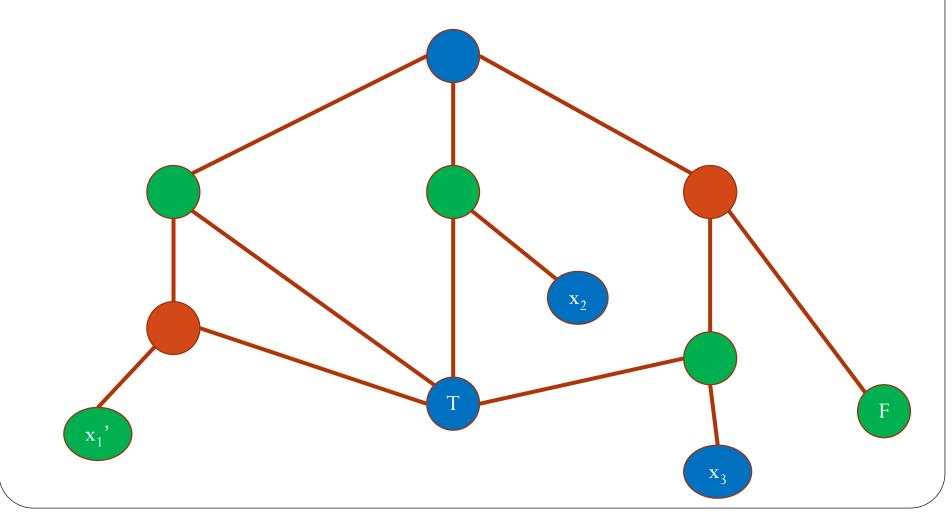
• <u>Claim</u>: There is a 3-coloring of the graph below with at least one of the nodes x_1' , x_2 and x_3 assigned T color.



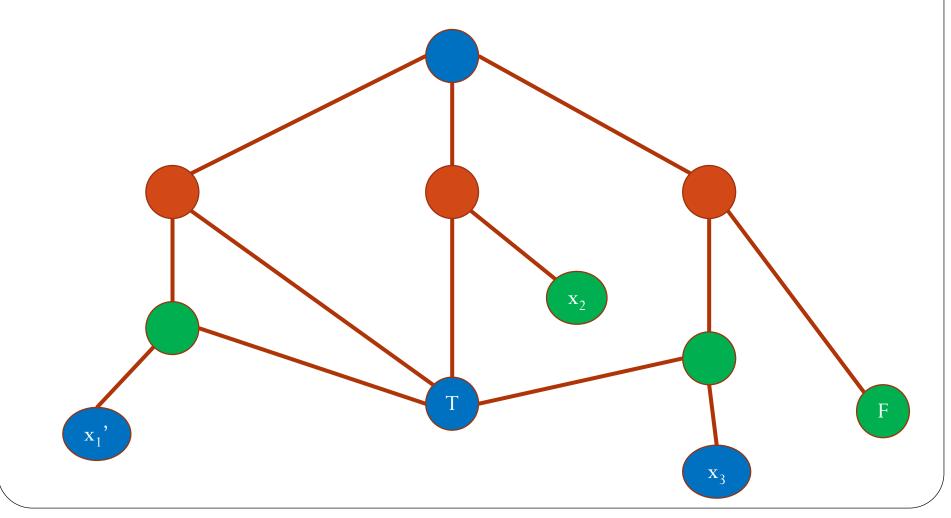
• $x_1': T, x_2: T, x_3: T$.



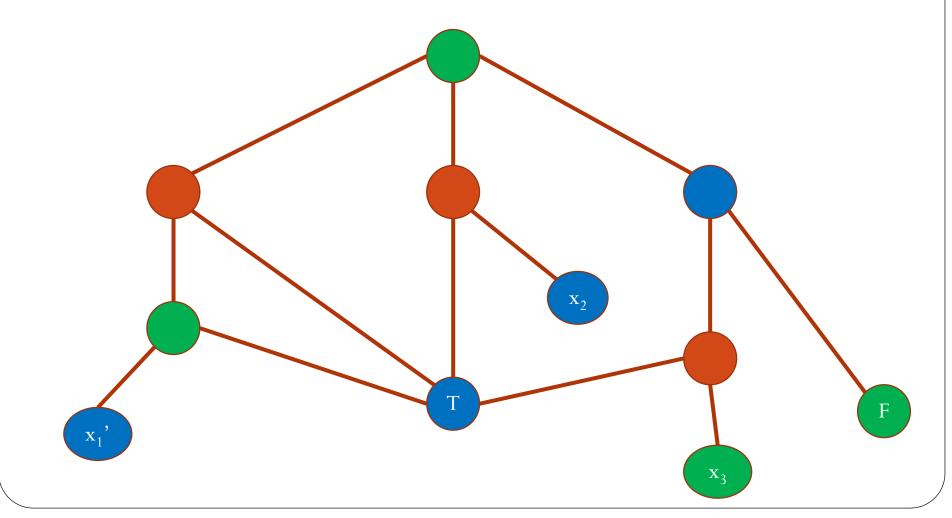
• $x_1': F, x_2: T, x_3: T$.



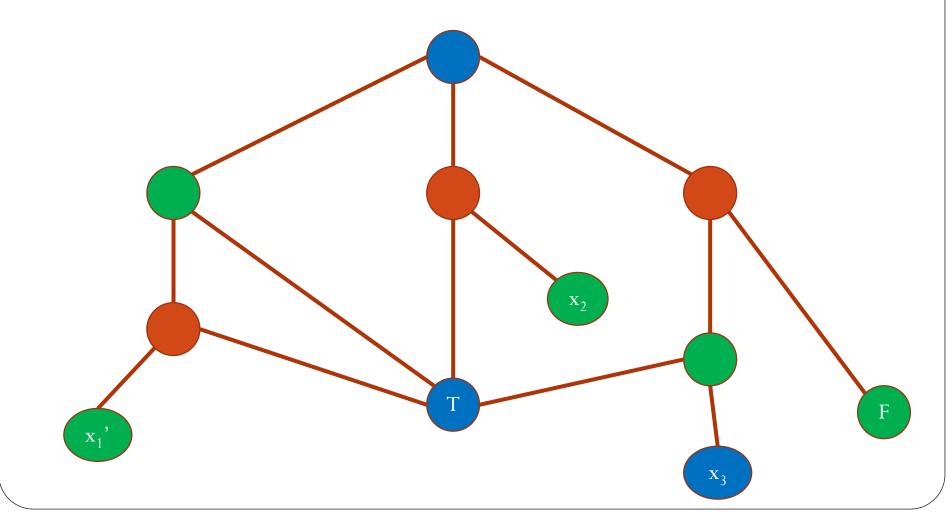
• $x_1': T, x_2: F, x_3: T$.



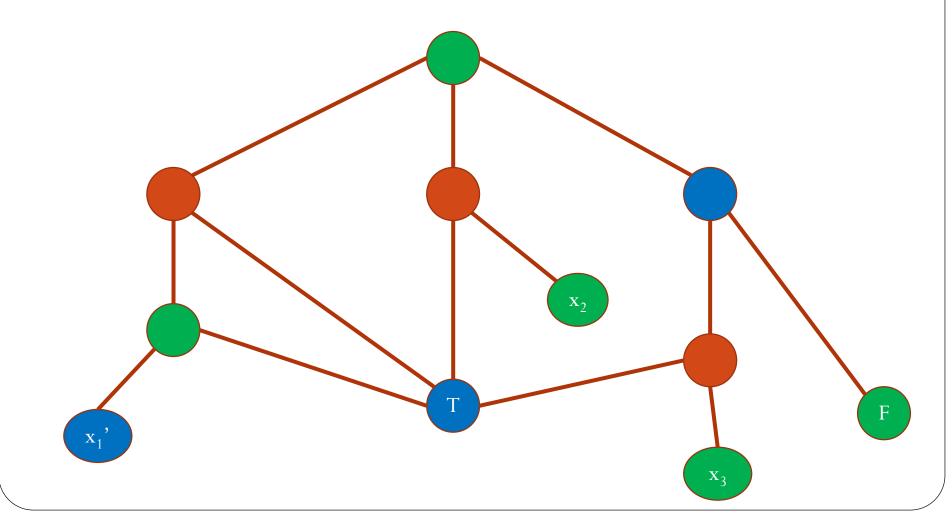
• $x_1': T, x_2: T, x_3: F$.



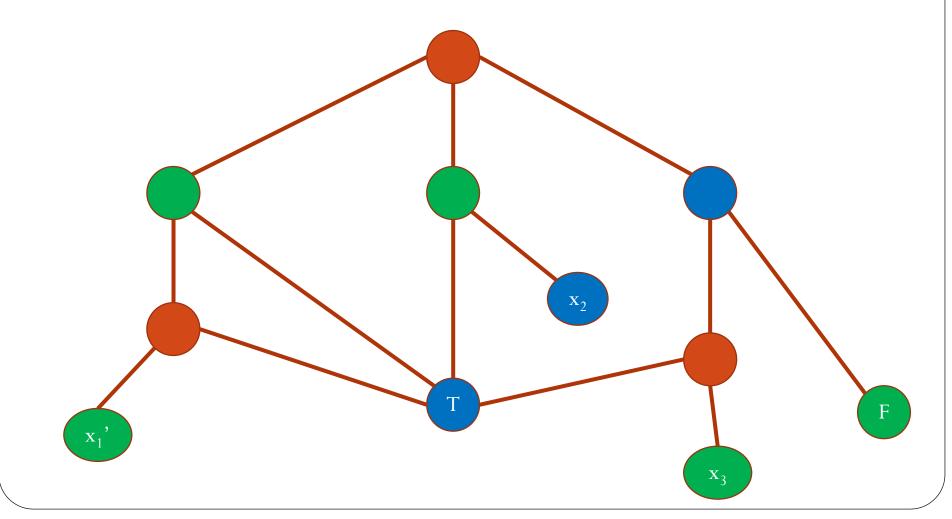
• $x_1': F, x_2: F, x_3: T$.



• $x_1': T, x_2: F, x_3: F$.



• $x_1': F, x_2: T, x_3: F$.



• <u>Claim</u>: The given formula is satisfiable if and only if the constructed graph has a **3** coloring.

Computational Intractability

NP-complete problems: SCHEDULING

- <u>Problem(Subset-Sum)</u>: Given natural numbers W_1, \ldots, W_n and a target number W, determine if there is a subset of $\{W_1, \ldots, W_n\}$ that adds up to precisely W.
- <u>Problem(Scheduling)</u>: Given n jobs with start time S_i and duration t_i and deadline d_i , determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.
- <u>Claim 1</u>: Subset-sum and Scheduling are in **NP**.
- <u>Claim 2</u>: Subset-sum \leq_p Scheduling.

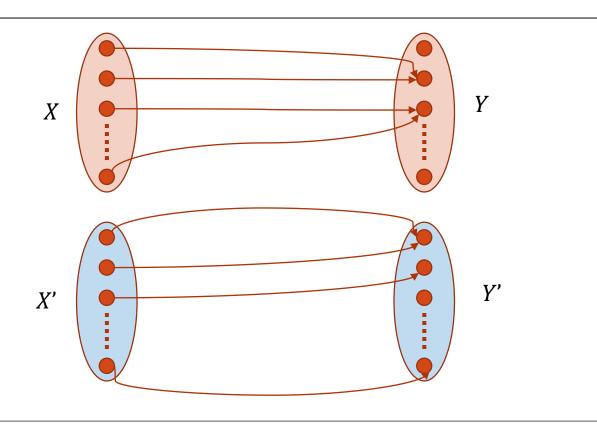
- <u>Problem(Subset-Sum)</u>: Given natural numbers W_1, \ldots, W_n and a target number W, determine if there is a subset of $\{W_1, \ldots, W_n\}$ that adds up to precisely W.
- <u>Problem(Scheduling)</u>: Given n jobs with start time S_i and duration t_i and deadline d_i , determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.
- <u>Claim 1</u>: Subset-sum and Scheduling are in **NP**.
- <u>Claim 2</u>: Subset-sum \leq_p Scheduling.
 - <u>Proof idea</u>: Given an instance of the subset sum problem $(\{W_1, \dots, W_n\}, W)$, we construct the following instance of the Scheduling problem: $((0, w_1, S + 1), \dots, (0, w_n, S + 1), (W, 1, W + 1))$. We then argue that there is a subset that sums to W if and only if the (n + 1) jobs can be scheduled. Here $S = W_1 + \dots + W_n$.

Computational Intractability

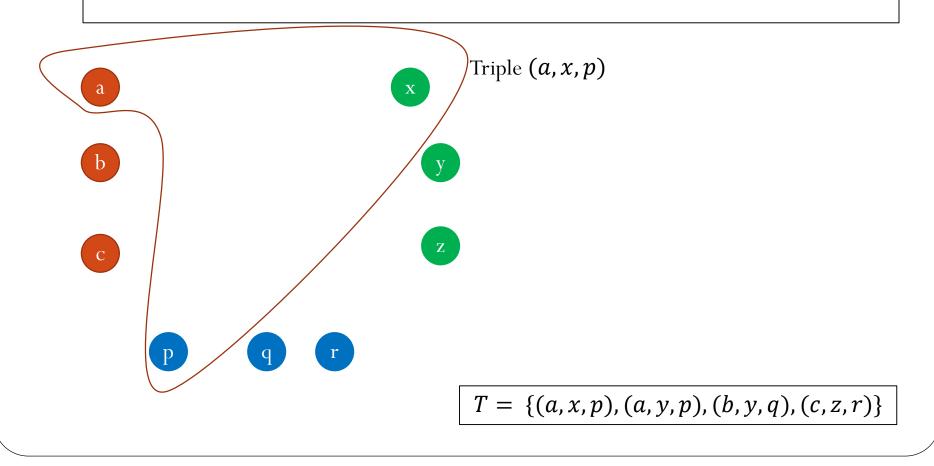
NP and NP-completeness

Computational intractability: Many-one reduction

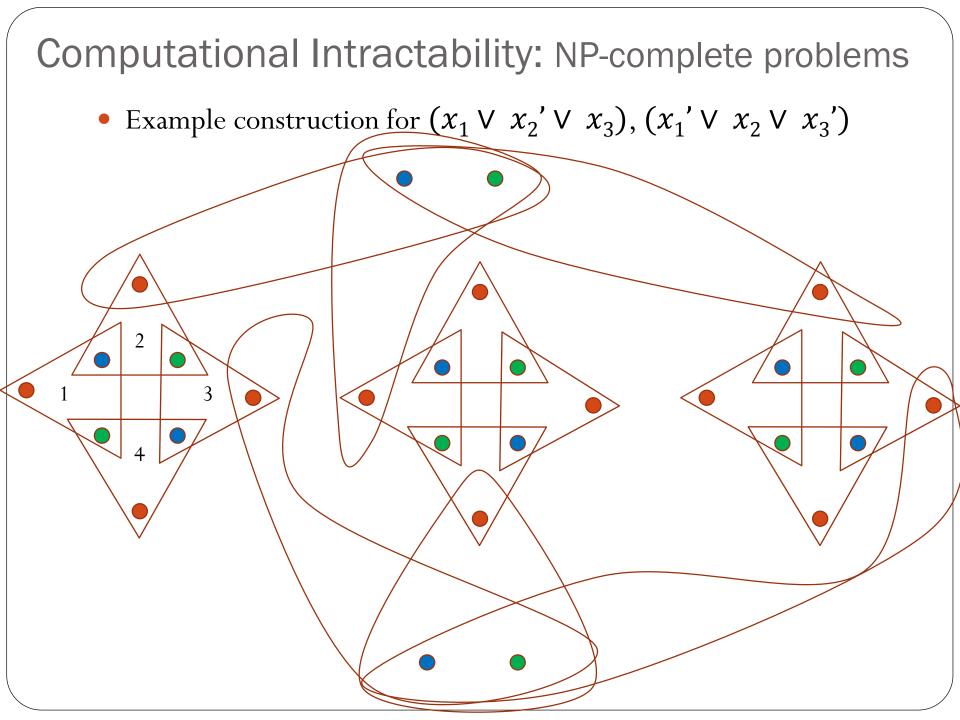
- Suppose we want to show $X \leq_p Y$.
 - <u>Many-one reduction</u>: Design an efficient mapping f from the set of instances of X to set of instances of Y such that s is in X if and only if f(s) is in Y.



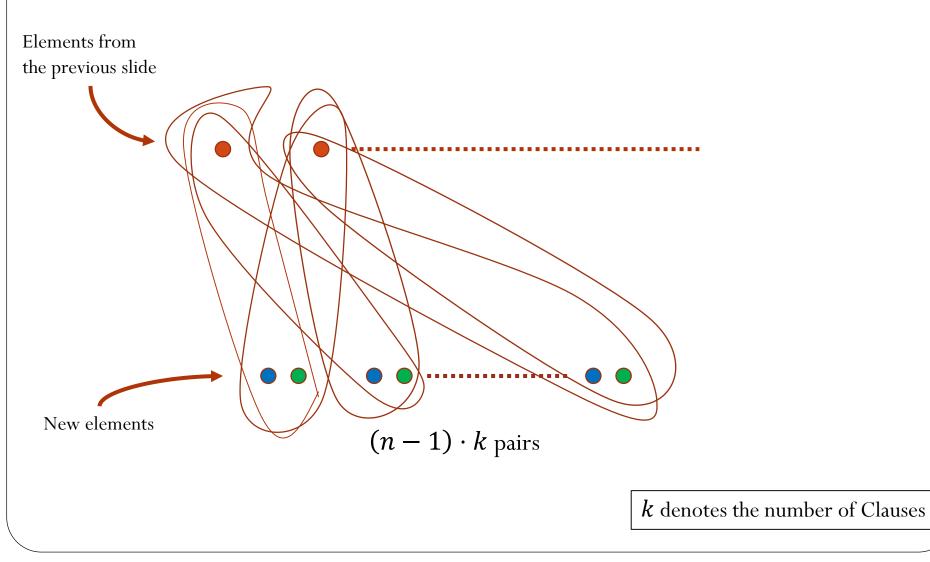
<u>Problem(3-D matching)</u>: Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of X U Y U Z is contained in exactly one of these triples.



- <u>Problem(3-D matching)</u>: Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of X U Y U Z is contained in exactly one of these triples.
- <u>Claim 1</u>: 3-D matching is in **NP**.
- <u>Claim 2</u>: 3-D matching is **NP**-complete.
 - <u>Claim 2.1</u>: 3-SAT \leq_p 3-D matching.
 - <u>Proof</u>: We will show an efficient many-one reduction.



• Example construction for $(x_1 \lor x_2' \lor x_3), (x_1' \lor x_2 \lor x_3')$



End