
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Computational Intractability

NP-complete problems: 𝑘-COLORING

 Problem (𝑘-coloring): Given a graph 𝐺, determine if 𝐺 is

𝑘-colorable.

 𝑘-colorable: A graph is said to be 𝑘 colorable if it is possible to assign

one of 𝑘 colors to each node such that for every edge (𝑢, 𝑣), 𝑢 and 𝑣
are assigned different colors.

Computational Intractability: NP-complete problems

 Problem (𝑘-coloring): Given a graph 𝐺, determine if 𝐺 is

𝑘-colorable.

 𝑘-colorable: A graph is said to be 𝑘 colorable if it is possible to assign

one of 𝑘 colors to each node such that for every edge (𝑢, 𝑣), 𝑢 and 𝑣
are assigned different colors.

Computational Intractability: NP-complete problems

 Problem (2-coloring): Given a graph 𝐺, determine if 𝐺 is

2-colorable.

 How hard is this problem?

Computational Intractability: NP-complete problems

 Problem (2-coloring): Given a graph 𝐺, determine if 𝐺 is

2-colorable.

 How hard is this problem?

 Claim: 𝐺 is 2-colorable if and only if 𝐺 is bipartite.

Computational Intractability: NP-complete problems

 Problem (3-coloring): Given a graph 𝐺, determine if 𝐺 is

3-colorable.

 Claim 1: 3-coloring is NP-complete.

 Claim 1.1: 3-coloring is in NP.

 Claim 1.2: 3-SAT ≤𝑝 3-coloring.

Computational Intractability: NP-complete problems

 Claim 1.2: 3-SAT ≤𝑝 3-coloring.

Computational Intractability: NP-complete problems

T F

B

𝑥1 𝑥2 𝑥𝑛 𝑥’𝑛𝑥′1 𝑥2
′

 Encoding (𝑥1’ ∨ 𝑥2 ∨ 𝑥3)

Computational Intractability: NP-complete problems

T

𝑥1’

𝑥2

𝑥3

F

 Claim: There is no 3-coloring of the graph below with nodes 𝑥1’,
𝑥2 and 𝑥3 assigned 𝐹 color.

Computational Intractability: NP-complete problems

T

𝑥1’

𝑥2

𝑥3

F

 Claim: There is a 3-coloring of the graph below with at least one

of the nodes 𝑥1’, 𝑥2 and 𝑥3 assigned 𝑇 color.

Computational Intractability: NP-complete problems

T

𝑥1’

𝑥2

𝑥3

F

 𝑥1’: 𝑇, 𝑥2: 𝑇, 𝑥3: 𝑇.

Computational Intractability: NP-complete problems

T

x1’

x2

x3

F

Computational Intractability: NP-complete problems

T

x1’

x2

x3

F

 𝑥1’: 𝐹, 𝑥2: 𝑇, 𝑥3: 𝑇.

Computational Intractability: NP-complete problems

T

x1’

x2

x3

F

 𝑥1’: 𝑇, 𝑥2: 𝐹, 𝑥3: 𝑇.

Computational Intractability: NP-complete problems

T

x1’

x2

x3

F

 𝑥1’: 𝑇, 𝑥2: 𝑇, 𝑥3: 𝐹.

Computational Intractability: NP-complete problems

T

x1’

x2

x3

F

 𝑥1’: 𝐹, 𝑥2: 𝐹, 𝑥3: 𝑇.

Computational Intractability: NP-complete problems

T

x1’

x2

x3

F

 𝑥1’: 𝑇, 𝑥2: 𝐹, 𝑥3: 𝐹.

Computational Intractability: NP-complete problems

T

x1’

x2

x3

F

 𝑥1’: 𝐹, 𝑥2: 𝑇, 𝑥3: 𝐹.

 Claim: The given formula is satisfiable if and only if the

constructed graph has a 3 coloring.

Computational Intractability: NP-complete problems

Computational Intractability

NP-complete problems: SCHEDULING

 Problem(Subset-Sum): Given natural numbers 𝑤1, … , 𝑤𝑛 and a

target number 𝑊, determine if there is a subset of {𝑤1, … , 𝑤𝑛}
that adds up to precisely 𝑊.

 Problem(Scheduling): Given 𝑛 jobs with start time 𝑠𝑖 and duration

𝑡𝑖 and deadline 𝑑𝑖, determine if all the jobs can be scheduled on a

single machine such that no deadlines are missed.

 Claim 1: Subset-sum and Scheduling are in NP.

 Claim 2: Subset-sum ≤𝑝 Scheduling.

Computational Intractability: NP-complete problems

 Problem(Subset-Sum): Given natural numbers 𝑤1, … , 𝑤𝑛 and a

target number 𝑊, determine if there is a subset of {𝑤1, … , 𝑤𝑛}
that adds up to precisely 𝑊.

 Problem(Scheduling): Given 𝑛 jobs with start time 𝑠𝑖 and duration

𝑡𝑖 and deadline 𝑑𝑖, determine if all the jobs can be scheduled on a

single machine such that no deadlines are missed.

 Claim 1: Subset-sum and Scheduling are in NP.

 Claim 2: Subset-sum ≤𝑝 Scheduling.

 Proof idea: Given an instance of the subset sum problem

({𝑤1, … ,𝑤𝑛}, 𝑊), we construct the following instance of the

Scheduling problem: ((0, 𝑤1, 𝑆 + 1), … , (0, 𝑤𝑛, 𝑆 + 1), (𝑊, 1,𝑊 + 1)).

We then argue that there is a subset that sums to 𝑊 if and only if the

(𝑛 + 1) jobs can be scheduled. Here 𝑆 = 𝑤1 +⋯+𝑤𝑛.

Computational Intractability: NP-complete problems

Computational Intractability

NP and NP-completeness

Computational intractability: Many-one

reduction
 Suppose we want to show 𝑋 ≤𝑝 𝑌.

 Many-one reduction: Design an efficient mapping 𝑓 from the
set of instances of 𝑋 to set of instances of 𝑌 such that 𝑠 is in 𝑋 if
and only if 𝑓(𝑠) is in 𝑌.

𝑋

𝑋’

𝑌

𝑌’

Computational Intractability: NP-complete problems

 Problem(3-D matching): Given disjoint sets 𝑋, 𝑌, and 𝑍 each of

size 𝑛, and given a set 𝑇 of triples (𝑥, 𝑦, 𝑧), determine if there

exist a subset of 𝑛 triples in 𝑇 such that each element of 𝑋 ∪ 𝑌 ∪
𝑍 is contained in exactly one of these triples.

a

b

c

x

y

z

p q r

𝑇 = {(𝑎, 𝑥, 𝑝), (𝑎, 𝑦, 𝑝), (𝑏, 𝑦, 𝑞), (𝑐, 𝑧, 𝑟)}

Triple (𝑎, 𝑥, 𝑝)

Computational Intractability: NP-complete problems

 Problem(3-D matching): Given disjoint sets 𝑋, 𝑌, and 𝑍 each of

size 𝑛, and given a set 𝑇 of triples (𝑥, 𝑦, 𝑧), determine if there

exist a subset of 𝑛 triples in 𝑇 such that each element of 𝑋 ∪ 𝑌 ∪
𝑍 is contained in exactly one of these triples.

 Claim 1: 3-D matching is in NP.

 Claim 2: 3-D matching is NP-complete.

 Claim 2.1: 3-SAT ≤𝑝 3-D matching.

 Proof: We will show an efficient many-one reduction.

Computational Intractability: NP-complete problems

 Example construction for (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3’)

1

2

3

4

Computational Intractability: NP-complete problems

 Example construction for (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3’)

𝑛 − 1 ⋅ 𝑘 pairs

𝑘 denotes the number of Clauses

New elements

Elements from

the previous slide

End

