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Computational Intractability

NP and NP-completeness



 NP: A problem 𝑋 is in NP if and only if there is an efficient 

certifier for 𝑋.

 NP-complete:  These are all problems 𝑋 with the following 

properties: 

1. 𝑋 is in NP.

2. For all 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Theorem (Cook-Levin): 3-SAT is NP-complete.

 NP-hard: These are all problems 𝑋 with the following property: 

1. For all 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Example: Given a graph 𝐺, find the maximum independent set 

in 𝐺.
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Computational Intractability

NP-complete problems



 We now know that 3-SAT is NP-complete. 

 Claim: Independent-set, Vertex-cover, Set-cover are also NP-

complete.
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 We now know that 3-SAT is NP-complete. 

 Claim: Independent-set, Vertex-cover, Set-cover are also NP-

complete.

 Proof: These problem are in NP and 

3-SAT ≤𝑝 Independent-set ≤𝑝Vertex-cover  ≤𝑝 Set-cover.
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 Problem (TSP): Given a complete, weighted, directed graph 𝐺 and a 

number 𝑘, determine if there is a tour in the graph of total length 

at most 𝑘.

 Claim 1: TSP is in NP.

 Proof: A tour of length at most 𝑘 is a certificate.
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 Problem (TSP): Given a complete, weighted, directed graph 𝐺 and a 

number 𝑘, determine if there is a tour in the graph of total length 

at most 𝑘.

 Claim 1: TSP is in NP.

 Proof: A tour of length at most 𝑘 is a certificate.

 Claim 2: 3-SAT ≤𝑝TSP

 Proof: 

 Claim 2.1: 3-SAT ≤𝑝 Hamiltonian-cycle.

 Claim 2.2: Hamiltonian-cycle ≤𝑝 TSP.
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 Problem (TSP): Given a complete, weighted, directed graph 𝐺 and a 

number 𝑘, determine if there is a tour in the graph of total length 

at most 𝑘.

 Claim 1: TSP is in NP.

 Proof: A tour of length at most 𝑘 is a certificate.

 Claim 2: 3-SAT ≤𝑝TSP

 Proof: 

 Claim 2.1: 3-SAT ≤𝑝 Hamiltonian-cycle.

 Claim 2.2: Hamiltonian-cycle ≤𝑝 TSP.

 Problem (Hamiltonian-cycle): Given an unweighted, directed 

graph, determine if there is a Hamiltonian cycle in the graph.

 Hamiltonian cycle: A cycle that visits each vertex exactly once.
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 Claim 2.2: Hamiltonian-cycle ≤𝑝 TSP.

 Proof: Given a unweighted, directed graph 𝐺, construct the 

following complete, directed, weighted graph 𝐺:

o For each edge (𝑢, 𝑣) in 𝐺 give the weight of 1 to edge (𝑢, 𝑣)
in 𝐺’.

o For each pair (𝑢, 𝑣) such that there is no edge from 𝑢 to 𝑣 in 

𝐺, add an edge (𝑢, 𝑣) with weight 2 in 𝐺’.

o Claim2.2.1: 𝐺 has a Hamiltonian cycle if and only if 𝐺’ has a 

tour of size at most 𝑛.

Computational Intractability: NP-complete problems



 Claim 2.1: 3-SAT ≤𝑝 Hamiltonian-cycle.

 Proof: Given an instance of the 3-SAT problem (a formula Ω
with 𝑛 variables and 𝑚 clauses), we need to create a directed 

graph 𝐺 such that Ω is satisfiable if and only if 𝐺 has a 

Hamiltonian cycle. 
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 Claim 2.1: 3-SAT ≤𝑝 Hamiltonian-cycle.

 Proof idea:
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 Claim 2.1.1: If the 3-SAT formula is satisfiable, then there is a 

Hamiltonian cycle in the constructed graph. 
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 Claim 2.1.1: If the 3-SAT formula is satisfiable, then there is a 

Hamiltonian cycle in the constructed graph. 

 Claim 2.1.2: If the constructed graph has a Hamiltonian cycle, 

then the 3-SAT formula has a satisfying assignment.
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 Claim 2.1.1: If the 3-SAT formula is satisfiable, then there is a 

Hamiltonian cycle in the constructed graph. 

 Claim 2.1.2: If the constructed graph has a Hamiltonian cycle, 

then the 3-SAT formula has a satisfying assignment.

 Main idea: Any Hamiltonian cycle in the constructed graph goes 

through each of the bi-directional chains only in one direction. 
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Computational Intractability

NP-complete problems: Hamiltonian Path



 Problem (Hamiltonian-path): Given a directed graph 𝐺, determine 

if there is a Hamiltonian path in the graph.

 Hamiltonian path:A path that visits each vertex exactly once.

 Claim 1: Hamiltonian-path is in NP.

 Proof: A Hamiltonian path acts as a certificate. 

 Claim 2: Hamiltonian-cycle ≤𝑝 Hamiltonian-path.
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 Problem (Hamiltonian-path): Given a directed graph 𝐺, determine 

if there is a Hamiltonian path in the graph.

 Hamiltonian path:A path that visits each vertex exactly once.

 Claim 1: Hamiltonian-path is in NP.

 Proof: A Hamiltonian path acts as a certificate. 

 Claim 2: Hamiltonian-cycle ≤𝑝 Hamiltonian-path.

 Proof idea: 
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Computational Intractability

NP-complete problems: 𝑘-COLORING



 Problem (𝑘-coloring): Given a graph 𝐺, determine if 𝐺 is 

𝑘-colorable.

 𝑘-colorable: A graph is said to be 𝑘 colorable if it is possible to assign 

one of 𝑘 colors to each node such that for every edge (𝑢, 𝑣), 𝑢 and 𝑣
are assigned different colors.
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 Problem (𝑘-coloring): Given a graph 𝐺, determine if 𝐺 is 

𝑘-colorable.

 𝑘-colorable: A graph is said to be 𝑘 colorable if it is possible to assign 

one of 𝑘 colors to each node such that for every edge (𝑢, 𝑣), 𝑢 and 𝑣
are assigned different colors.
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 Problem (2-coloring): Given a graph 𝐺, determine if 𝐺 is 

2-colorable.

 How hard is this problem?
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 Problem (2-coloring): Given a graph 𝐺, determine if 𝐺 is 

2-colorable.

 How hard is this problem?

 Claim: 𝐺 is 2-colorable if and only if 𝐺 is bipartite.
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