
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

 Efficient certification:

 We say an algorithm 𝐵 is an efficient certifier for a problem 𝑋 if

the following holds:

 𝐵 is a polynomial time algorithm that takes two input strings 𝑠 and 𝑡.

 There is a polynomial 𝑝 such that for every string 𝑠, we have that 𝑠 is in 𝑋 if

and only if there exists a string 𝑡 such that |𝑡| ≤ 𝑝(|𝑠|) and 𝐵(𝑠, 𝑡) = 1.

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 NP stands for Non-deterministic Polynomial time:

 Non-deterministic algorithms are allowed to make non-

deterministic choices (guesswork). Such algorithms can guess the

certificate 𝑡 for an instance 𝑠.

Computational Intractability: Defining NP

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 P: This is the set of all problems for which there exists an

efficient algorithm that solves the problem. P stands for

polynomial time.

 Theorem: P is contained in NP.

 Claim 1: Independent-set is in NP.

Computational Intractability: Defining NP

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 P: This is the set of all problems for which there exists an

efficient algorithm that solves the problem. P stands for

polynomial time.

 Theorem: P is contained in NP.

 Claim 1: Independent-set is in NP.

 Proof: The certificate is an independent set of size at least 𝑘. The

certifier just checks if the given set is indeed an independent set.

Computational Intractability: Defining NP

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 P: This is the set of all problems for which there exists an

efficient algorithm that solves the problem. P stands for

polynomial time.

 Theorem: P is contained in NP.

 Claim 1: Independent-set is in NP.

 Proof: The certificate is an independent set of size at least 𝑘. The

certifier just checks if the given set is indeed an independent set.

 Claim 2: SAT is in NP.

Computational Intractability: Defining NP

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 P: This is the set of all problems for which there exists an

efficient algorithm that solves the problem. P stands for

polynomial time.

 Theorem: P is contained in NP.

 Claim 1: Independent-set is in NP.

 Proof: The certificate is an independent set of size at least 𝑘. The

certifier just checks if the given set is indeed an independent set.

 Claim 2: SAT is in NP.

 Proof: The certificate is an assignment. The certifier checks if this

assignment makes all clauses true.

Computational Intractability: Defining NP

 Is P = NP?

Computational Intractability: NP Completeness

 Is P = NP?

 What are the hardest problems in NP?

 A problem 𝑋 in NP is the hardest problem in NP if for all

problems 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Such problems are called NP-complete problems.

Computational Intractability: NP Completeness

 Is P = NP?

 What are the hardest problems in NP?

 A problem 𝑋 in NP is the hardest problem in NP if for all

problems 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Such problems are called NP-complete problems.

 NP-complete: These are all problems 𝑋 with the following

properties:

1. 𝑋 is in NP.

2. For all 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

Computational Intractability: NP Completeness

 Is P = NP?

 What are the hardest problems in NP?

 A problem 𝑋 in NP is the hardest problem in NP if for all problems

𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Such problems are called NP-complete problems.

 NP-complete: These are all problems 𝑋 with the following

properties:

1. 𝑋 is in NP.

2. For all 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 How do we show that there is a problem that is NP-complete?

 Suppose by some “magic” we have shown that SAT is NP-complete.

Does that mean that there are more NP-complete problems?

Computational Intractability: NP Completeness

 Theorem(Cook-Levin): 3-SAT is NP-complete.

 Proof idea:

 Claim 1: Circuit-SAT is NP-complete.

 Claim 2: Circuit-SAT ≤𝑝 3-SAT.

Computational Intractability: NP & NP-complete

 Circuit: A directed acyclic graph where each node is either

 Constant nodes: Labeled 0/1

 Input nodes: These denote the variables.

 Gates: AND, OR, and NOT.

There is a single output node.

Computational Intractability: NP Completeness

0 1 x1 x2 x3 xn

OR

AND

OR

AND

NOT

 Circuit: A directed acyclic graph where each node is either

 Constant nodes: Labeled 0/1

 Input nodes: These denote the variables.

 Gates: AND, OR, and NOT.

There is a single output node.

 Problem(Circuit-SAT): Given a circuit determine if there is an

input such that the output of the circuit is 1.

Computational Intractability: NP Completeness

 Circuit: A directed acyclic graph where each node is either

 Constant nodes: Labeled 0/1

 Input nodes: These denote the variables.

 Gates: AND, OR, and NOT.

There is a single output node.

 Problem(Circuit-SAT): Given a circuit determine if there is an

input such that the output of the circuit is 1.

 Claim 1: Circuit-SAT is NP-complete.

 Fact: For every algorithm that runs in time polynomial in the

inputs size 𝑛, there is a circuit of size polynomial in 𝑛 such that

the output of both are the same.

Computational Intractability: NP Completeness

 Problem(Circuit-satisfiability): Given a circuit determine if

there is an input such that the output of the circuit is 1.

 Claim 1: Circuit-SAT is NP-complete.

 Fact: For every algorithm that runs in time polynomial in the

inputs size 𝑛, there is an equivalent circuit of size polynomial

in 𝑛.

 Proof of Claim 1: ?

Computational Intractability: NP Completeness

 Problem(Circuit-satisfiability): Given a circuit determine if there

is an input such that the output of the circuit is 1.

 Claim 1: Circuit-SAT is NP-complete.

 Fact: For every algorithm that runs in time polynomial in the

inputs size 𝑛, there is an equivalent circuit of size polynomial in 𝑛.

 Proof of Claim 1: Given an input instance 𝑠 of any NP problem

𝑋, consider the equivalent circuit for the efficient certifier of 𝑋.

The input gates of this circuit has 𝑠 and 𝑡.

 Claim 1.1: If 𝑠 is in 𝑋, the circuit is satisfiable.

 Claim 1.2: If 𝑠 is not in 𝑋, then the circuit is not satisfiable.

Computational Intractability: NP Completeness

 Problem(Circuit-satisfiability): Given a circuit determine if there

is an input such that the output of the circuit is 1.

 Claim 1: Circuit-SAT is NP-complete.

 Claim 2: Circuit-SAT ≤𝑝 3-SAT.

 Proof: For any circuit, we can write an equivalent 3-SAT formula.

Computational Intractability: NP Completeness

0 1 x1 x2 x3 xn

OR

AND
OR

AND

NOT

Computational Intractability

NP and NP-completeness

 NP: A problem 𝑋 is in NP if and only if there is an efficient

certifier for 𝑋.

 NP-complete: These are all problems 𝑋 with the following

properties:

1. 𝑋 is in NP.

2. For all 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Theorem (Cook-Levin): 3-SAT is NP-complete.

 NP-hard: These are all problems 𝑋 with the following property:

1. For all 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Example: Given a graph 𝐺, find the maximum independent set

in 𝐺.

Computational Intractability: NP & NP-complete

Computational Intractability

NP-complete problems

 We now know that 3-SAT is NP-complete.

 Claim: Independent-set, Vertex-cover, Set-cover are also NP-

complete.

Computational Intractability: NP-complete problems

 We now know that 3-SAT is NP-complete.

 Claim: Independent-set, Vertex-cover, Set-cover are also NP-

complete.

 Proof: These problem are in NP and

3-SAT ≤𝑝 Independent-set ≤𝑝 Vertex-cover ≤𝑝 Set-cover.

Computational Intractability: NP-complete problems

 Problem (TSP): Given a complete, weighted, directed graph 𝐺 and a

number 𝑘, determine if there is a tour in the graph of total length

at most 𝑘.

 Claim 1: TSP is in NP.

 Proof: A tour of length at most 𝑘 is a certificate.

Computational Intractability: NP-complete problems

 Problem (TSP): Given a complete, weighted, directed graph 𝐺 and a

number 𝑘, determine if there is a tour in the graph of total length

at most 𝑘.

 Claim 1: TSP is in NP.

 Proof: A tour of length at most 𝑘 is a certificate.

 Claim 2: 3-SAT ≤𝑝TSP

 Proof:

 Claim 2.1: 3-SAT ≤𝑝 Hamiltonian-cycle.

 Claim 2.2: Hamiltonian-cycle ≤𝑝 TSP.

Computational Intractability: NP-complete problems

 Problem (TSP): Given a complete, weighted, directed graph 𝐺 and a

number 𝑘, determine if there is a tour in the graph of total length

at most 𝑘.

 Claim 1: TSP is in NP.

 Proof: A tour of length at most 𝑘 is a certificate.

 Claim 2: 3-SAT ≤𝑝TSP

 Proof:

 Claim 2.1: 3-SAT ≤𝑝 Hamiltonian-cycle.

 Claim 2.2: Hamiltonian-cycle ≤𝑝 TSP.

 Problem (Hamiltonian-cycle): Given an unweighted, directed

graph, determine if there is a Hamiltonian cycle in the graph.

 Hamiltonian cycle: A cycle that visits each vertex exactly once.

Computational Intractability: NP-complete problems

 Claim 2.2: Hamiltonian-cycle ≤𝑝 TSP.

 Proof: Given a unweighted, directed graph 𝐺, construct the

following complete, directed, weighted graph 𝐺:

o For each edge (𝑢, 𝑣) in 𝐺 give the weight of 1 to edge (𝑢, 𝑣)
in 𝐺’.

o For each pair (𝑢, 𝑣) such that there is no edge from 𝑢 to 𝑣 in

𝐺, add an edge (𝑢, 𝑣) with weight 2 in 𝐺’.

o Claim2.2.1: 𝐺 has a Hamiltonian cycle if and only if 𝐺’ has a

tour of size at most 𝑛.

Computational Intractability: NP-complete problems

End

