CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Polynomial-time reductions: Examples

3-SAT Vs Independent-set

Computational Intractability: Reduction

- Problem(3-SAT): Given a set of clauses C_{1}, \ldots, C_{m}, each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?
- Problem(Independent set): Given a graph $G=(V, E)$ and an integer k, check if there is an independent set of size at least k in G.
- Claim:_3-SAT \leq_{p} Independent-set

Computational Intractability: Reduction

- Claim:_3-SAT \leq_{p} Independent-set
- Proof idea:
- Given an instance of the 3-SAT problem $\left(C_{1}, \ldots, C_{m}\right)$, construct an instance of the Independent-set problem (G, m).
- Then show that $\left(C_{1}, \ldots, C_{m}\right)$ has a satisfying assignment if and only if G has an independent set of size at least m.

Computational Intractability: Reduction

- Claim:_3-SAT \leq_{p} Independent-set
- Proof idea:
- Given an instance of the 3-SAT problem $\left(C_{1}, \ldots, C_{m}\right)$, construct an instance of the Independent-set problem (G, m).
- Then show that $\left(C_{1}, \ldots, C_{m}\right)$ has a satisfying assignment if and only if G has an independent set of size at least m.
- Example:
- 3-SAT instance: $\left(x_{1} \vee x_{2} \vee x_{3}{ }^{\prime}\right),\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2}{ }^{\prime} \vee x_{3}{ }^{\prime}\right)$
- Independent-set instance: (G, m)

Computational Intractability: Reduction

- Claim:_3-SAT \leq_{p} Independent-set
- Proof idea:
- Given an instance of the 3 -SAT problem $\left(C_{1}, \ldots, C m\right)$, construct an instance of the Independent-set problem (G, m).
- Then show that $\left(C_{1}, \ldots, C m\right)$ has a satisfying assignment if and only if G has an independent set of size at least m.
- Example:
- 3-SAT instance: $\left(x_{1} \vee x_{2} \vee x_{3}{ }^{\prime}\right),\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2}{ }^{\prime} \vee x_{3}{ }^{\prime}\right)$
- Independent-set instance: (G, m)

Computational Intractability: Reduction

- Claim:_3-SAT \leq_{p} Independent-set
- Proof idea:
- Example:
- 3-SAT instance: $\left(x_{1} \vee x_{2} \vee x_{3}{ }^{\prime}\right),\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2}{ }^{\prime} \vee x_{3}{ }^{\prime}\right)$
- Independent-set instance: (G, m)
- Claim 1: If $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ has a satisfying assignment, then G has an independent set of size 4.

Computational Intractability: Reduction

- Claim:_3-SAT \leq_{p} Independent-set
- Proof idea:
- Example:
- 3-SAT instance: $\left(x_{1} \vee x_{2} \vee x_{3}{ }^{\prime}\right),\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2} \vee x_{3}\right),\left(x_{1}{ }^{\prime} \vee x_{2}{ }^{\prime} \vee x_{3}{ }^{\prime}\right)$
- Independent-set instance: (G, m)
- Claim 2: If G has an independent set of size 4 , then $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ has a satisfying assignment.

Computational Intractability: Reduction

- Claim:_SAT \leq_{p} Independent-set
- Proof: SAT $\leq_{p} 3$-SAT \leq_{p} Independent-set

Computational Intractability: Reduction

- Claim:_SAT \leq_{p} Independent-set
- Proof: SAT $\leq_{p} 3$-SAT \leq_{p} Independent-set.
- Claim: SAT \leq_{p} Set-cover

Computational Intractability: Reduction

- Claim:_SAT \leq_{p} Independent-set
- Proof: SAT $\leq_{p} 3$-SAT \leq_{p} Independent-set.
- Claim: SAT \leq_{p} Set-cover
- Proof:
- $\mathrm{SAT} \leq_{p} 3$-SAT
- 3-SAT \leq_{p} Independent-set
- Independent-set \leq_{p} Vertex-cover
- Vertex-cover \leq_{p} Set-cover

Computational Intractability

NP and NP-complete

Computational Intractability: Reductions

- Polynomial time reduction:
- Consider two problems X and Y.
- Suppose there is a black box that solves arbitrary instances of problem X.
- Suppose any arbitrary instance of problem Y can be solved using a polynomial number of standard computational steps and a polynomial number of calls to the black box that solves instance of problem X correctly.
- We say that Y is polynomial time reducible to $X\left(Y \leq_{p} X\right)$.
- Examples:
- Independent-set \leq_{p} Vertex-cover
- SAT $\leq{ }_{p}$ Independent-set

Computational Intractability: Reductions

- We said that the problems Independent-set, Vertex-cover, SAT seem hard.
- Are there some instances of these problems that are easy?

Computational Intractability: Reductions

- We said that the problems Independent-set, Vertex-cover, SAT seem hard.
- Are there some instances of these problems that are easy?
- 2-Independent-set: Given (G, k) such that the degree of each vertex in G is at most 2 , determine if there is an independent set of size at least k.
- Is Independent-set $\leq_{p} 2$-Independent-set?
- Can you solve the 2-Independent-set in polynomial time?

Computational Intractability: Reductions

- We said that the problems Independent-set, Vertex-cover, SAT seem hard.
- Are there some instances of these problems that are easy?
- 2-Independent-set: Given (G, k) such that the degree of each vertex in G is at most 2 , determine if there is an independent set of size at least k.
- Is Independent-set \leq_{p} 2-Independent-set?
- Can you solve the 2-Independent-set in polynomial time?
- 2-Vertex-cover: Given (G, k) such that the degree of each vertex in G is at most 2, determine if there is an independent set of size at most k.
- 2-SAT: Given a Boolean formula in CNF form such that each clause has at most 2 terms. Determine if the formula is satisfiable.

Computational Intractability: Reductions

- Reductions just give pair-wise relationships between problems.
- Is there a common theme that binds all these problems into one computational class.
- Let us try to extract a theme that is common to the problems we looked at:
- Independent-set: Given (G, k), determine if G has an independent set of size at least k.
- Vertex-cover: Given (G, k), determine if G has a vertex cover of size at most k.
- SAT: Given a Boolean formula Ω in conjunctive normal form, determine if the formula is satisfiable.

Computational Intractability: Defining NP

- Let us try to extract a theme that is common to the problems we looked at:
- Independent-set: Given (G, k), determine if G has an independent set of size at least k.
- Suppose there is an independent set of size at least k and someone gives such a subset as a certificate. Then we can verify this certificate quickly.
- Vertex-cover: Given (G, k), determine if G has a vertex cover of size at most k.
- Suppose there is a vertex cover of size at most k and someone gives such a subset as a certificate. Then we can verify this certificate quickly.
- SAT: Given a Boolean formula Ω in conjunctive normal form, determine if the formula is satisfiable.
- Suppose the formula Ω is satisfiable and someone gives such a satisfying assignment as a certificate. Then we can verify this certificate quickly.

Computational Intractability: Defining NP

- Problem encoding and algorithm:
- An instance of a problem can be encoded using a finite bit string S.
- A decision problem X can be thought of as a set of strings on which the answer is true (or 1).
- We say that an algorithm A solves a problem X if for all strings S, $A(s)=1$ if and only if s is in X.
- We say that an algorithm A has polynomial running time if there is a polynomial p such that for every string S, A terminates on S in at most $O(p(|s|))$ steps.

Computational Intractability: Defining NP

- Efficient certification:
- We say an algorithm B is an efficient certifier for a problem X if the following holds:
- B is a polynomial time algorithm that takes two input strings S and t.
- There is a polynomial p such that for every string S, we have that S is in X if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
- B does not solve the problem but only verifies a proposed solution correctly.
- Can we use B to solve the problem?

Computational Intractability: Defining NP

- Efficient certification:
- We say an algorithm B is an efficient certifier for a problem X if the following holds:
- B is a polynomial time algorithm that takes two input strings S and t.
- There is a polynomial p such that for every string s, we have that S is in X if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
- B does not solve the problem but only verifies a proposed solution correctly.
- Can we use B to solve the problem?
- Can we use B to solve the problem efficiently?

Computational Intractability: Defining NP

- Efficient certification:
- We say an algorithm B is an efficient certifier for a problem X if the following holds:
- B is a polynomial time algorithm that takes two input strings S and t.
- There is a polynomial p such that for every string s, we have that S is in X if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
- B does not solve the problem but only verifies a proposed solution correctly.
- Can we use B to solve the problem?
- Can we use B to solve the problem efficiently?
- NP:This is the set of all problems for which there exists an efficient certification algorithm.

Computational Intractability: Defining NP

- Efficient certification:
- We say an algorithm B is an efficient certifier for a problem X if the following holds:
- B is a polynomial time algorithm that takes two input strings S and t.
- There is a polynomial p such that for every string S, we have that S is in X if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
- NP: This is the set of all problems for which there exists an efficient certification algorithm.
- NP stands for Non-deterministic Polynomial time:
- Non-deterministic algorithms are allowed to make nondeterministic choices (guesswork). Such algorithms can guess the certificate t for an instance S.

Computational Intractability: Defining NP

- NP:This is the set of all problems for which there exists an efficient certification algorithm.
- $\underline{\mathbf{P}}$: This is the set of all problems for which there exists an efficient algorithm that solves the problem. \mathbf{P} stands for polynomial time.
- Theorem: \mathbf{P} is contained in NP.
- Claim 1: Independent-set is in NP.

Computational Intractability: Defining NP

- NP:This is the set of all problems for which there exists an efficient certification algorithm.
- $\underline{\mathbf{P}}$:This is the set of all problems for which there exists an efficient algorithm that solves the problem. \mathbf{P} stands for polynomial time.
- Theorem: \mathbf{P} is contained in NP.
- Claim 1: Independent-set is in NP.
- Proof: The certificate is an independent set of size at least k. The certifier just checks if the given set is indeed an independent set.

Computational Intractability: Defining NP

- NP:This is the set of all problems for which there exists an efficient certification algorithm.
- $\underline{\mathbf{P}}$:This is the set of all problems for which there exists an efficient algorithm that solves the problem. \mathbf{P} stands for polynomial time.
- Theorem: \mathbf{P} is contained in NP.
- Claim 1: Independent-set is in NP.
- Proof:The certificate is an independent set of size at least k. The certifier just checks if the given set is indeed an independent set.
- Claim 2: SAT is in NP.

Computational Intractability: Defining NP

- NP:This is the set of all problems for which there exists an efficient certification algorithm.
- $\underline{\mathbf{P}}$:This is the set of all problems for which there exists an efficient algorithm that solves the problem. \mathbf{P} stands for polynomial time.
- Theorem: \mathbf{P} is contained in NP.
- Claim 1: Independent-set is in NP.
- Proof: The certificate is an independent set of size at least k. The certifier just checks if the given set is indeed an independent set.
- Claim 2: SAT is in NP.
- Proof:The certificate is an assignment. The certifier checks if this assignment makes all clauses true.

Computational Intractability: NP Completeness

- Is $\mathbf{P}=\mathbf{N P}$?

Computational Intractability: NP Completeness

- Is $\mathbf{P}=\mathbf{N} \mathbf{P}$?
- What are the hardest problems in NP?
- A problem X in NP is the hardest problem in NP if for all problems Y in NP, $Y \leq_{p} X$.
- Such problems are called NP-complete problems.

Computational Intractability: NP Completeness

- Is $\mathbf{P}=\mathbf{N P}$?
- What are the hardest problems in NP?
- A problem X in NP is the hardest problem in NP if for all problems Y in NP, $Y \leq_{p} X$.
- Such problems are called NP-complete problems.
- NP-complete: These are all problems X with the following properties:

1. X is in NP.
2. For all Y in NP, $Y \leq_{p} X$.

Computational Intractability: NP Completeness

- Is $\mathbf{P}=\mathbf{N P}$?
- What are the hardest problems in NP?
- A problem X in $\mathbf{N P}$ is the hardest problem in $\mathbf{N P}$ if for all problems Y in NP, $Y \leq_{p} X$.
- Such problems are called NP-complete problems.
- NP-complete: These are all problems X with the following properties:

1. X is in NP.
2. For all Y in NP, $Y \leq_{p} X$.

- How do we show that there is a problem that is NP-complete?
- Suppose by some "magic" we have shown that SAT is NP-complete. Does that mean that there are more NP-complete problems?

End

