
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Polynomial-time reductions:
Examples

3-SAT Vs Independent-set

 Problem(Independent set): Given a graph 𝐺 = (𝑉, 𝐸) and

an integer 𝑘, check if there is an independent set of size at least

𝑘 in 𝐺.

Computational Intractability: Reduction

 Problem(3-SAT): Given a set of clauses 𝐶1, … , 𝐶𝑚, each of

length at most 3, over a set of variables 𝑥1, … , 𝑥𝑛, does there

exist a satisfying assignment?

 Claim: 3-SAT ≤𝑝 Independent-set

Computational Intractability: Reduction

 Claim: 3-SAT ≤𝑝 Independent-set

 Proof idea:

 Given an instance of the 3-SAT problem (𝐶1, … , 𝐶𝑚),
construct an instance of the Independent-set problem (𝐺,𝑚).

 Then show that (𝐶1, … , 𝐶𝑚) has a satisfying assignment if and

only if 𝐺 has an independent set of size at least 𝑚.

Computational Intractability: Reduction

 Claim: 3-SAT ≤𝑝 Independent-set

 Proof idea:

 Given an instance of the 3-SAT problem (𝐶1, … , 𝐶𝑚),
construct an instance of the Independent-set problem (𝐺,𝑚).

 Then show that (𝐶1, … , 𝐶𝑚) has a satisfying assignment if and

only if 𝐺 has an independent set of size at least 𝑚.

 Example:

 3-SAT instance: (𝑥1 ∨ 𝑥2 ∨ 𝑥3’), (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3), (𝑥1’ ∨ 𝑥2’ ∨ 𝑥3’)

 Independent-set instance: (𝐺,𝑚)

Computational Intractability: Reduction

 Claim: 3-SAT ≤𝑝 Independent-set

 Proof idea:
 Given an instance of the 3-SAT problem (𝐶1, … , 𝐶𝑚), construct an instance of the

Independent-set problem (𝐺,𝑚).

 Then show that (𝐶1, … , 𝐶𝑚) has a satisfying assignment if and only if 𝐺 has an
independent set of size at least 𝑚.

 Example:
 3-SAT instance: (𝑥1 ∨ 𝑥2 ∨ 𝑥3’), (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3), (𝑥1’ ∨ 𝑥2’ ∨ 𝑥3’)

 Independent-set instance: (𝐺,𝑚)

𝑥1

𝑥2 𝑥3’

𝑥1

𝑥2’ 𝑥3

𝑥1’

𝑥2 𝑥3

𝑥1’

𝑥2’ 𝑥3’

Computational Intractability: Reduction

 Claim: 3-SAT ≤𝑝 Independent-set

 Proof idea:

 Example:

 3-SAT instance: (𝑥1 ∨ 𝑥2 ∨ 𝑥3’), (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3), (𝑥1’ ∨ 𝑥2’ ∨ 𝑥3’)

 Independent-set instance: (𝐺,𝑚)

 Claim 1: If (𝐶1, 𝐶2, 𝐶3, 𝐶4) has a satisfying assignment, then 𝐺 has an

independent set of size 4.

𝑥1

𝑥2 𝑥3’

𝑥1

𝑥2’ 𝑥3

𝑥1’

𝑥2 𝑥3

𝑥1’

𝑥2’ 𝑥3’

Computational Intractability: Reduction

 Claim: 3-SAT ≤𝑝 Independent-set

 Proof idea:

 Example:

 3-SAT instance: (𝑥1 ∨ 𝑥2 ∨ 𝑥3’), (𝑥1 ∨ 𝑥2’ ∨ 𝑥3), (𝑥1’ ∨ 𝑥2 ∨ 𝑥3), (𝑥1’ ∨ 𝑥2’ ∨ 𝑥3’)

 Independent-set instance: (𝐺,𝑚)

 Claim 2: If 𝐺 has an independent set of size 4, then (𝐶1, 𝐶2, 𝐶3, 𝐶4) has a

satisfying assignment.

𝑥1

𝑥2 𝑥3’

𝑥1

𝑥2’ 𝑥3

𝑥1’

𝑥2 𝑥3

𝑥1’

𝑥2’ 𝑥3’

Computational Intractability: Reduction

 Claim: SAT ≤𝑝 Independent-set

 Proof: SAT ≤𝑝 3-SAT ≤𝑝 Independent-set

Computational Intractability: Reduction

 Claim: SAT ≤𝑝 Independent-set

 Proof: SAT ≤𝑝 3-SAT ≤𝑝 Independent-set.

 Claim: SAT ≤𝑝 Set-cover

Computational Intractability: Reduction

 Claim: SAT ≤𝑝 Independent-set

 Proof: SAT ≤𝑝 3-SAT ≤𝑝 Independent-set.

 Claim: SAT ≤𝑝 Set-cover

 Proof:

 SAT ≤𝑝 3-SAT

 3-SAT ≤𝑝 Independent-set

 Independent-set ≤𝑝 Vertex-cover

 Vertex-cover ≤𝑝 Set-cover

Computational Intractability

NP and NP-complete

Computational Intractability: Reductions

 Polynomial time reduction:

 Consider two problems 𝑋 and 𝑌.

 Suppose there is a black box that solves arbitrary instances of

problem 𝑋.

 Suppose any arbitrary instance of problem 𝑌 can be solved using

a polynomial number of standard computational steps and a

polynomial number of calls to the black box that solves instance

of problem 𝑋 correctly.

 We say that 𝑌 is polynomial time reducible to 𝑋 (𝑌 ≤𝑝 𝑋).

 Examples:

 Independent-set ≤𝑝 Vertex-cover

 SAT ≤𝑝 Independent-set

Computational Intractability: Reductions

 We said that the problems Independent-set, Vertex-cover,

SAT seem hard.

 Are there some instances of these problems that are easy?

Computational Intractability: Reductions

 We said that the problems Independent-set, Vertex-cover,

SAT seem hard.

 Are there some instances of these problems that are easy?

 2-Independent-set: Given (𝐺, 𝑘) such that the degree of

each vertex in 𝐺 is at most 2, determine if there is an

independent set of size at least 𝑘.

 Is Independent-set ≤𝑝 2-Independent-set?

 Can you solve the 2-Independent-set in polynomial time?

Computational Intractability: Reductions
 We said that the problems Independent-set, Vertex-cover,

SAT seem hard.

 Are there some instances of these problems that are easy?

 2-Independent-set: Given (𝐺, 𝑘) such that the degree of
each vertex in 𝐺 is at most 2, determine if there is an
independent set of size at least 𝑘.

 Is Independent-set ≤𝑝 2-Independent-set?

 Can you solve the 2-Independent-set in polynomial time?

 2-Vertex-cover: Given (𝐺, 𝑘) such that the degree of each
vertex in 𝐺 is at most 2, determine if there is an independent
set of size at most 𝑘.

 2-SAT: Given a Boolean formula in CNF form such that each
clause has at most 2 terms. Determine if the formula is
satisfiable.

 Reductions just give pair-wise relationships between

problems.

 Is there a common theme that binds all these problems into

one computational class.

 Let us try to extract a theme that is common to the problems

we looked at:

 Independent-set: Given (𝐺, 𝑘), determine if 𝐺 has an

independent set of size at least 𝑘.

 Vertex-cover: Given (𝐺, 𝑘), determine if 𝐺 has a vertex cover

of size at most 𝑘.

 SAT: Given a Boolean formula Ω in conjunctive normal form,

determine if the formula is satisfiable.

Computational Intractability: Reductions

 Let us try to extract a theme that is common to the problems

we looked at:

 Independent-set: Given (𝐺, 𝑘), determine if 𝐺 has an

independent set of size at least 𝑘.

 Suppose there is an independent set of size at least 𝑘 and someone gives

such a subset as a certificate. Then we can verify this certificate quickly.

 Vertex-cover: Given (𝐺, 𝑘), determine if 𝐺 has a vertex cover

of size at most 𝑘.

 Suppose there is a vertex cover of size at most 𝑘 and someone gives such

a subset as a certificate. Then we can verify this certificate quickly.

 SAT: Given a Boolean formula Ω in conjunctive normal form,

determine if the formula is satisfiable.

 Suppose the formula Ω is satisfiable and someone gives such a satisfying

assignment as a certificate. Then we can verify this certificate quickly.

Computational Intractability: Defining NP

 Problem encoding and algorithm:

 An instance of a problem can be encoded using a finite bit string 𝑠.

 A decision problem 𝑋 can be thought of as a set of strings on

which the answer is true (or 1).

 We say that an algorithm 𝐴 solves a problem 𝑋 if for all strings 𝑠,

𝐴(𝑠) = 1 if and only if 𝑠 is in 𝑋.

 We say that an algorithm 𝐴 has polynomial running time if there is

a polynomial 𝑝 such that for every string 𝑠, 𝐴 terminates on 𝑠 in

at most 𝑂(𝑝(|𝑠|)) steps.

Computational Intractability: Defining NP

 Efficient certification:

 We say an algorithm 𝐵 is an efficient certifier for a problem 𝑋 if

the following holds:

 𝐵 is a polynomial time algorithm that takes two input strings 𝑠 and 𝑡.

 There is a polynomial 𝑝 such that for every string 𝑠, we have that 𝑠 is in 𝑋 if

and only if there exists a string 𝑡 such that |𝑡| ≤ 𝑝(|𝑠|) and 𝐵(𝑠, 𝑡) = 1.

 𝐵 does not solve the problem but only verifies a proposed

solution correctly.

 Can we use 𝐵 to solve the problem?

Computational Intractability: Defining NP

 Efficient certification:

 We say an algorithm 𝐵 is an efficient certifier for a problem 𝑋 if

the following holds:

 𝐵 is a polynomial time algorithm that takes two input strings 𝑠 and 𝑡.

 There is a polynomial 𝑝 such that for every string 𝑠, we have that 𝑠 is in 𝑋 if

and only if there exists a string 𝑡 such that |𝑡| ≤ 𝑝(|𝑠|) and 𝐵(𝑠, 𝑡) = 1.

 𝐵 does not solve the problem but only verifies a proposed

solution correctly.

 Can we use 𝐵 to solve the problem?

 Can we use 𝐵 to solve the problem efficiently?

Computational Intractability: Defining NP

 Efficient certification:

 We say an algorithm 𝐵 is an efficient certifier for a problem 𝑋 if

the following holds:

 𝐵 is a polynomial time algorithm that takes two input strings 𝑠 and 𝑡.

 There is a polynomial 𝑝 such that for every string 𝑠, we have that 𝑠 is in 𝑋 if

and only if there exists a string 𝑡 such that |𝑡| ≤ 𝑝(|𝑠|) and 𝐵(𝑠, 𝑡) = 1.

 𝐵 does not solve the problem but only verifies a proposed

solution correctly.

 Can we use 𝐵 to solve the problem?

 Can we use 𝐵 to solve the problem efficiently?

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

Computational Intractability: Defining NP

 Efficient certification:

 We say an algorithm 𝐵 is an efficient certifier for a problem 𝑋 if

the following holds:

 𝐵 is a polynomial time algorithm that takes two input strings 𝑠 and 𝑡.

 There is a polynomial 𝑝 such that for every string 𝑠, we have that 𝑠 is in 𝑋 if

and only if there exists a string 𝑡 such that |𝑡| ≤ 𝑝(|𝑠|) and 𝐵(𝑠, 𝑡) = 1.

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 NP stands for Non-deterministic Polynomial time:

 Non-deterministic algorithms are allowed to make non-

deterministic choices (guesswork). Such algorithms can guess the

certificate 𝑡 for an instance 𝑠.

Computational Intractability: Defining NP

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 P: This is the set of all problems for which there exists an

efficient algorithm that solves the problem. P stands for

polynomial time.

 Theorem: P is contained in NP.

 Claim 1: Independent-set is in NP.

Computational Intractability: Defining NP

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 P: This is the set of all problems for which there exists an

efficient algorithm that solves the problem. P stands for

polynomial time.

 Theorem: P is contained in NP.

 Claim 1: Independent-set is in NP.

 Proof: The certificate is an independent set of size at least 𝑘. The

certifier just checks if the given set is indeed an independent set.

Computational Intractability: Defining NP

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 P: This is the set of all problems for which there exists an

efficient algorithm that solves the problem. P stands for

polynomial time.

 Theorem: P is contained in NP.

 Claim 1: Independent-set is in NP.

 Proof: The certificate is an independent set of size at least 𝑘. The

certifier just checks if the given set is indeed an independent set.

 Claim 2: SAT is in NP.

Computational Intractability: Defining NP

 NP: This is the set of all problems for which there exists an

efficient certification algorithm.

 P: This is the set of all problems for which there exists an

efficient algorithm that solves the problem. P stands for

polynomial time.

 Theorem: P is contained in NP.

 Claim 1: Independent-set is in NP.

 Proof: The certificate is an independent set of size at least 𝑘. The

certifier just checks if the given set is indeed an independent set.

 Claim 2: SAT is in NP.

 Proof: The certificate is an assignment. The certifier checks if this

assignment makes all clauses true.

Computational Intractability: Defining NP

 Is P = NP?

Computational Intractability: NP Completeness

 Is P = NP?

 What are the hardest problems in NP?

 A problem 𝑋 in NP is the hardest problem in NP if for all

problems 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Such problems are called NP-complete problems.

Computational Intractability: NP Completeness

 Is P = NP?

 What are the hardest problems in NP?

 A problem 𝑋 in NP is the hardest problem in NP if for all

problems 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Such problems are called NP-complete problems.

 NP-complete: These are all problems 𝑋 with the following

properties:

1. 𝑋 is in NP.

2. For all 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

Computational Intractability: NP Completeness

 Is P = NP?

 What are the hardest problems in NP?

 A problem 𝑋 in NP is the hardest problem in NP if for all problems

𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 Such problems are called NP-complete problems.

 NP-complete: These are all problems 𝑋 with the following

properties:

1. 𝑋 is in NP.

2. For all 𝑌 in NP, 𝑌 ≤𝑝 𝑋.

 How do we show that there is a problem that is NP-complete?

 Suppose by some “magic” we have shown that SAT is NP-complete.

Does that mean that there are more NP-complete problems?

Computational Intractability: NP Completeness

End

