CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Polynomial-time reductions: Examples

Independent Set Vs Degree-3 Independent Set

Computational Intractability: Reduction

- Problem(Deg-3-Independent set): Given a graph $G=$ (V, E) of bounded degree 3 and an integer k, check if there is an independent set of size at least k in G.
- Graph with bounded degree 3: A graph is said to have bounded degree 3 if the degrees of all vertices in the graph is at most 3 .
- Claim: Independent-set \leq_{p} Deg-3-Independent-set.

Computational Intractability: Reduction

- Problem(Deg-3-Independent set): Given a graph $G=$ (V, E) of bounded degree 3 and an integer k, check if there is an independent set of size at least k in G.
- Graph with bounded degree 3: A graph is said to have bounded degree 3 if the degrees of all vertices in the graph is at most 3 .
- Claim: Independent-set \leq_{p} Deg-3-Independent-set.

Computational Intractability: Reduction

- Claim: Independent-set \leq_{p} Deg-3-Independent-set.

- Claim: G has an independent set of size at least k if and only if G^{\prime} has an independent set of size at least $(k+1)$.

Polynomial-time reductions: Examples

Vertex-cover Vs Set-cover

Computational Intractability: Reduction

- Problem(Set-cover): Given a set U of n elements, a collection S_{1}, \ldots, S_{m} of subsets of U, and an integer k, does there exist a collection of at most k of these sets whose union is equal to all of U ?

Computational Intractability: Reduction

- Problem(Set-cover): Given a set U of n elements, a collection S_{1}, \ldots, S_{m} of subsets of U, and an integer k, does there exist a collection of at most k of these sets whose union is equal to all of U ?
- Claim: Vertex-cover \leq_{p} Set-cover.

Polynomial-time reductions: Examples

Satisfiability: SAT Vs 3-SAT

Computational Intractability: Reduction

- Definitions:
- Boolean variables: 0-1 (true/false) variables.
- Term: A variable or its negation is called a term.
- Clause: Disjunction of terms (e.g. $\left(x_{1} \vee x_{2}{ }^{\prime} \vee x_{3}\right)$).
- Assignment: Fixing 0-1 values for each variables.
- Satisfying assignment: An assignment of variables is called a satisfying assignment for a collection of clauses if all clauses evaluate to 1 (true).
- Example: $\left(x_{1} \vee x_{2}{ }^{\prime}\right),\left(x_{2} \vee x_{3}{ }^{\prime}\right),\left(x_{3} \vee x_{1}{ }^{\prime}\right)$
- Problem(SAT): Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?

Computational Intractability: Reduction

- Problem(SAT): Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?
- Problem(3-SAT): Given a set of clauses C_{1}, \ldots, C_{m}, each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?

Computational Intractability: Reduction

- Problem(SAT): Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?
- Problem(3-SAT): Given a set of clauses C_{1}, \ldots, C_{m}, each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?
- Claim:_SAT \leq_{p} 3-SAT

Computational Intractability: Reduction

- Problem(SAT): Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?
- Problem(3-SAT): Given a set of clauses C_{1}, \ldots, C_{m}, each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n}, does there exist a satisfying assignment?
- Claim:_SAT \leq_{p} 3-SAT
- Proof: Main idea:
- $\left(t_{1} \vee t_{2} \vee t_{3} \vee t_{4}\right) \equiv\left(\left(t_{1} \vee t_{2} \vee z\right),\left(z \equiv t_{3} \vee t_{4}\right)\right)$

End

