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Topics

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational intractability

 Other topics: Randomized algorithms, Computational 
Geometry, Number-theoretic algorithms etc.
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 Efficient Algorithms: All algorithms that run in time 

polynomial in the input size. We will call them polynomial 

time algorithms.

 Question: Given a problem, does there exist an efficient 

algorithm to solve the problem?

 There are a lot of problems arising in various fields for which 

this question is still unresolved.

 Question: Are these problems related in some manner? Are 

there certain aspects that are common to all these problems?

 Question: If someone discovers an efficient algorithm to one 

of these difficult problems, then does that mean that there 

are efficient algorithms for other problems? If so, how do we 

obtain such an algorithm.
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Computational Intractability
 Polynomial time reduction:

 Consider two problems 𝑋 and 𝑌.

 Suppose there is a black box that solves arbitrary instances of 

problem 𝑋.

 Suppose any arbitrary instance of problem 𝑌 can be solved using 

a polynomial number of standard computational steps and a 

polynomial number of calls to the black box that solves instance 

of problem 𝑋 correctly. 

 We say that 𝑌 is polynomial time reducible to 𝑋 or 𝑌 ≤𝑝 𝑋.

 Claim 1: Suppose 𝑌 ≤𝑝 𝑋. If 𝑋 can be solved in polynomial 

time, then 𝑌 can be solved in polynomial time. 

 Claim 2: Suppose 𝑌 ≤𝑝 𝑋. If 𝑌 cannot be solved in 

polynomial time, then 𝑋 cannot be solved in polynomial time. 
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 Problem(Vertex cover): Given a graph 𝐺 = (𝑉, 𝐸) and an 

integer 𝑘, check if there is a vertex cover of size at most 𝑘 in 𝐺.
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 Claim 1: Minimum-vertex-cover ≤𝑝 Vertex-cover.

 Claim 2: Vertex-cover ≤𝑝 Minimum-vertex-cover
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Computational Intractability: Reduction

 Claim: Independent-set ≤𝑝Vertex-cover.

 Proof: 

 Claim 1: Let 𝐼 be an independent set of 𝐺, then 𝑉 − 𝐼 is a 

vertex cover of 𝐺.

 Claim 2: Let 𝑆 be a vertex cover of 𝐺, then 𝑉 − 𝑆 is an 

independent set of 𝐺.

 Claim 3: 𝐺 has an independent set of size at least 𝑘 if and only if 

𝐺 has a vertex cover of size at most (𝑛 − 𝑘).

 Given an instance of the independent set problem (𝐺, 𝑘) create 

an instance of the vertex cover problem (𝐺, 𝑛 − 𝑘), make a 

query to the black box solving the vertex cover problem and 

return the answer that is returned by the black box. 
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Computational Intractability: Reduction

 Claim: Minimum-vertex-cover ≤𝑝 Maximum-independent-

set.

 Proof 1: 𝐺 has an independent set of size at least 𝑘 if and 

only if 𝐺 has a vertex cover of size at most (𝑛 − 𝑘).

 Proof 2: 

 Minimum-vertex-cover ≤𝑝 Vertex-cover.

 Vertex-cover ≤𝑝 Independent-set.

 Independent-set ≤𝑝 Maximum-independent-set.

 Theorem: If 𝑋 ≤𝑝 𝑌 and 𝑌 ≤𝑝 𝑍, then 𝑋 ≤𝑝 𝑍.
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Computational Intractability: Reduction

 Claim: Independent-set ≤𝑝 Deg-3-Independent-set.

𝐺 𝐺’

 Claim: 𝐺 has an independent set of size at least 𝑘 if and only 

if 𝐺’ has an independent set of size at least (𝑘 + 1).
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