CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Network Flow: Applications

Edge disjoint paths in undirected graphs

Network Flow: Applications

- Problem: Given an undirected graph G find the maximum number of edge disjoint paths between S and t in G.

Network Flow: Applications

- Problem: Given an undirected graph G find the maximum number of edge disjoint paths between S and t in G.

- Idea: Add bi-directional edges and consider the max flow that has at least one flow value 0 between any pair of nodes.

Network Flow: Applications

Image Segmentation

Network Flow: Applications

- You are given an image as a 2-D matrix of pixels.
- We want to determine the foreground and the background pixels.
- Each pixel i, has an integer $a(i)$ associated with it denoting how likely it is to be a foreground pixel.
- Each pixel i, has an integer $b(i)$ associated with it denoting how likely it is to be a background pixel.
- For neighboring pixels, i and j, there is an associated penalty $p(i, j)$ with putting i and j in different sets.
- Find a partition of the pixels into F and B such that:

$$
\sum_{i \in F} a(i)+\sum_{i \in B} b(i)-\sum_{i, j \text { areneighborsandin differentsets }} p(i, j)
$$

is maximized.

Network Flow: Applications

Network Flow: Applications

Idea: Find an $s-t$ min-cut in the above flow network. This gives an optimal partition of pixels.

Network Flow: Applications

- Let $C=\sum a(i)+\sum b(i)$.
- Claim 1: Consider a partition (F, B) of the set of pixels. Let $S=F \cup\{s\}, T=B \cup\{t\}$. Then the capacity of the $s-t$ cut (S, T) in the flow network is given by $c(S, T)=C-\left(\sum_{i \in F} a(i)+\sum_{j \in B} b(j)-\sum_{i, j \text { are neighbors and in dif ferent sets }} p(i, j)\right)$

Network Flow: Applications

- Let $C=\sum a(i)+\sum b(i)$.
- Claim 1: Consider a partition (F, B) of the set of pixels. Let $\mathrm{S}=F \cup\{s\}, T=B \cup\{t\}$. Then the capacity of the $s-t$ cut (S, T) in the flow network is given by $c(S, T)=c-\left(\sum_{i \in F} a(i)+\sum_{j \in B} b(j)-\sum_{i, \text { jare neighbors and in aifferent sets }} p(i, j)\right)$
- Claim 2: Consider an $s-t$ cut (S, T) in the flow network. Let $F=A \backslash\{s\}, B=T \backslash\{t\}$. Then
$c(S, T)=C-\left(\sum_{i \in F} a(i)+\sum_{i \in B} b(i)-\sum_{i, j \text { are neighborsin in different sets }} p(i, j)\right)$

Network Flow: Applications

- Let $C=\sum a(i)+\sum b(i)$.
- Claim 1: Consider a partition (F, B) of the set of pixels. Let $\mathrm{S}=F \cup\{s\}, T=B \cup\{t\}$. Then the capacity of the $s-t$ cut (S, T) in the flow network is given by $c(S, T)=c-\left(\sum_{i \in F} a(i)+\sum_{j \in B} b(j)-\sum_{i, j \text { are neighbors and in itifferent sets }} p(i, j)\right)$
- Claim 2: Consider an $s-t$ cut (S, T) in the flow network. Let $F=A \backslash\{s\}, B=T \backslash\{t\}$. Then $c(S, T)=c-\left(\sum_{i \in F} a(i)+\sum_{i \in B} b(i)-\sum_{i, j \text { are neighbors indifferent sets }} p(i, j)\right)$
- Theorem: If (S, T) be an $s-t$ min-cut in the flow network, then $F=S \backslash\{s\}, B=T \backslash\{t\}$ is an optimal solution to the Image Segmentation problem.

Network Flow: Applications

Project Selection

Network Flow: Applications

- Problem: There are n projects, each associated with a profit $p(i)$ (this could be positive or negative integer). There are dependencies between projects. These dependencies are stored using a dependency graph G where there is a directed edge from project i to project j if project i depends on project j. Find a feasible subset A of projects such that $\sum_{i \in A} p(i)$ is maximized.
- Feasible subset: A subset A is called feasible if for any edge (i, j), if i is in A, then j is in A.

Network Flow: Applications

- Consider the following network flow G^{\prime}
- Add a source S and a sink node t.
- For all i such that $p(i)>0$, there is an edge (s, i) in G^{\prime} with capacity $p(i)$.
- For all i such that $p(i) \leq 0$, there is an edge (i, t) in G^{\prime} with capacity $-p(i)$.
- For all edges (i, j) in G, there is an edge (i, j) in G^{\prime} with capacity ∞.

G

Network Flow: Applications

- Consider the following network flow G^{\prime}
- Add a source S and a sink node t.
- For all i such that $p(i)>0$, there is an edge (s, i) in G^{\prime} with capacity $p(i)$.
- For all i such that $p(i) \leq 0$, there is an edge (i, t) in G^{\prime} with capacity $-p(i)$.
- For all edges (i, j) in G, there is an edge (i, j) in G^{\prime} with capacity ∞.

Network Flow: Applications

- Let $C=\sum_{i, p(i)>0} p(i)$

Network Flow: Applications

- Let $C=\sum_{i, p(i)>0} p(i)$
- Claim 1: For any feasible subset A, there is an $s-t$ cut $\left(A^{\prime}, B^{\prime}\right)$ in G^{\prime} such that $c\left(A^{\prime}, B^{\prime}\right)=C-\sum_{i \in A} p(i)$.

Network Flow: Applications

- Let $C=\sum_{i, p(i)>0} p(i)$
- Claim 1: For any feasible subset A, there is an $s-t$ cut $\left(A^{\prime}, B^{\prime}\right)$ in G^{\prime} such that $c\left(A^{\prime}, B^{\prime}\right)=C-\sum_{i \in A} p(i)$.
- Proof: Consider $A^{\prime}=A \cup\{s\}$.

Network Flow: Applications

- Let $C=\sum_{i, p(i)>0} p(i)$
- Claim 1: For any feasible subset A, there is an $s-t$ cut $\left(A^{\prime}, B^{\prime}\right)$ in G^{\prime} such that $c\left(A^{\prime}, B^{\prime}\right)=C-\sum_{i \in A} p(i)$.
- Proof: Consider $A^{\prime}=A \cup\{s\}$.

Network Flow: Applications

- Claim 1: For any feasible subset A, there is an $s-t$ cut $\left(A^{\prime}, B^{\prime}\right)$ in G^{\prime} such that $c\left(A^{\prime}, B^{\prime}\right)=C-\sum_{i \in A} p(i)$.
- Proof: Consider $A^{\prime}=A \cup\{s\}$. We have:

$$
\begin{aligned}
c\left(A^{\prime}, B^{\prime}\right) & =\sum_{i \notin A, p(i)>0} p(i)-\sum_{i \in A, p(i) \leq 0} p(i) \\
& =\left(C-\sum_{i \in A, p(i)>0} p(i)\right)-\sum_{i \in A, p(i) \leq 0} p(i) \\
& =C-\sum_{i \in A} p(i)
\end{aligned}
$$

G^{\prime}

Network Flow: Applications

- Claim 2: For any $s-t$ cut $\left(A^{\prime}, B^{\prime}\right)$ in G^{\prime} of capacity at most $C, A=A^{\prime} \backslash\{s\}$ is a feasible subset.

Network Flow: Applications

- Claim 2: For any $s-t$ cut $\left(A^{\prime}, B^{\prime}\right)$ in G^{\prime} of capacity at most $C, A=A^{\prime} \backslash\{s\}$ is a feasible subset.
- Proof: Since all edges (i, j) corresponding to G are have capacity ∞.

Network Flow: Applications

- Claim 2: For any $s-t$ cut $\left(A^{\prime}, B^{\prime}\right)$ in G^{\prime} of capacity at most $C, A=A^{\prime} \backslash\{s\}$ is a feasible subset. Moreover $c\left(A^{\prime}, B^{\prime}\right)=$ $C-\sum_{i \in A} p(i)$.

Network Flow: Applications

- Theorem: If $\left(A^{\prime}, B^{\prime}\right)$ is the minimum cut in G^{\prime}, then $A^{\prime}-\{s\}$ is an optimal solution to the project selection problem.

G^{\prime}

End

