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Network Flow: Applications

 Problem:  There are 𝑛 teams. Each team 𝑖 has a current 

number of wins denoted by 𝑤(𝑖). There are 𝐺(𝑖, 𝑗) games 

yet to be played between team 𝑖 and 𝑗. For a given team 𝑥, 

has 𝑥 been eliminated?
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Team 𝑥 can end with at most 𝑚 wins, i.e., 𝑚 = 𝑤 𝑥 +  𝑗 𝐺(𝑥, 𝑗).
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 Claim: Team 𝑥 has been eliminated if and only if the 

maximum flow in the network is strictly less than 𝑔∗ =
 𝑖,𝑗≠𝑥𝐺(𝑖, 𝑗). 
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 If we can somehow find a subset 𝑇 of teams (not including 𝑥) 

such that   𝑖∈𝑇𝑤 𝑖 +  𝑖,𝑗∈𝑇,𝑖<𝑗𝐺 𝑖, 𝑗 > 𝑚 ⋅ |𝑇|. 

Then we have a witness to the fact that 𝑥 has been eliminated.

 Can we find such a subset 𝑇?
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 () Suppose 𝑥 has been eliminated, then the max-flow in 

the network < 𝑔∗.

 () Consider any 𝑠 − 𝑡 min-cut (𝐴, 𝐵) in the graph.

 Claim 1: If  𝑣𝑖𝑗 is in 𝐴, then both 𝑣𝑖 and 𝑣𝑗 are in 𝐴.
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Circulation with demands
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 Given a weighted directed graph representing a 

transportation network. 

 There are multiple supply nodes in the graph denoting the 

places that has a factory for some product. 

 There are multiple demand nodes denoting the consumption 

points.

 Each supply node 𝑣 has an associated supply value 𝑠(𝑣)
denoting the amount the product it can supply.

 Each demand node 𝑣 has a similar demand value 𝑑(𝑣).

 Question: Is there a way to ship product such that all demand 

and supply goals are met?
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 Problem: Given a directed graph 𝐺 with integer edge 
capacities. For each node 𝑣, there is an associated demand 
value 𝑡(𝑣) denoting the demand at the node (for supply nodes 
this is −𝑠(𝑣),  for demand nodes 𝑑(𝑣), for other nodes 0). Find 
whether there exists a flow 𝑓 such that for all nodes 𝑣:

𝑓𝑖𝑛(𝑣) – 𝑓𝑜𝑢𝑡(𝑣) = 𝑡(𝑣)
and the capacity constraints are met. Such a flow is called a 
feasible circulation.
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 Claim 1: For any feasible circulation 𝑓,  𝑣 𝑡(𝑣) = 0. That 

means supply is equal to the demand.

 Consider the flow network and let D =
 𝑑𝑒𝑚𝑎𝑛𝑑 𝑛𝑜𝑑𝑒𝑠 𝑣 𝑑(𝑣).

 Claim 2: There is a feasible circulation in 𝐺 if and only if the 

maximum 𝑠 − 𝑡 flow in the flow network is 𝐷.
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 Claim 2: There is a feasible circulation in 𝐺 if and only if the 

maximum 𝑠 − 𝑡 flow in the flow network is 𝐷.
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 Claim 2: There is a feasible circulation in 𝐺 if and only if the 

maximum 𝑠 − 𝑡 flow in the flow network is 𝐷.

 Proof: 

() extend the feasible circulation for the network.
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 Claim 2: There is a feasible circulation in 𝐺 if and only if the 

maximum 𝑠 − 𝑡 flow in the flow network is 𝐷.

 Proof: 

() extend the feasible circulation for the network.

() Consider max 𝑠 − 𝑡 flow and just remove 𝑠 and 𝑡.
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Supply and Demand with capacity 
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 Problem: Given a directed graph 𝐺 with integer edge capacities 

𝑐(𝑒) and a lower bound 𝑙(𝑒). For each node 𝑣, there is an 

associated demand value 𝑡(𝑣) denoting the demand at the node (for 

supply nodes this is −𝑠(𝑣),  for demand nodes 𝑑(𝑣), for other nodes 0). 

Find whether there exists a flow 𝑓 such that for all nodes 𝑣:

𝑓𝑖𝑛(𝑣) – 𝑓𝑜𝑢𝑡(𝑣) = 𝑡(𝑣)
and the following capacity constraints are met. For each edge 𝑒: 

𝑙(𝑒) ≤ 𝑓(𝑒) ≤ 𝑐(𝑒)
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