CSL 356: Analysis and Design of

Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Network Flow

Strongly polynomial time algorithm for max-flow

Network Flow: Edmonds-Karp

Max-Flow //Edmonds-Karp algorithm
- Start with a flow f such that f(e) = 0
- while there is an S — t path P in Gf
- Find an § — € path with least hop-length
- Execute the augmenting path algorithm to obtain f”
- Update f to f~ and Gf to Gf’

- return f

1000000 000000

1000000

Network Flow: Edmonds-Karp

° Letd f (S, V) denote the hop-length of the shortest path from
StoVin Gy.

® Claim 1: Forall v # s,t,d f (s, V) either remains same or

increases with each flow augmentation.

Network Flow: Edmonds-Karp

° Letd f (S, V) denote the hop-length of the shortest path from
StoVin Gy.

® Claim 1: Forall v # s,t,d f (s, V) either remains same or

increases with each flow augmentation.

® Proof:

® Let f be the flow just before the first augmentation that
decreases the shortest distance of some vertex. Let f~ be the
flow after this augmentation.

® Let U be the vertex with minimum value of d f»(S, V) whose
shortest path length was reduced.

® Let U be the vertex just before v in the shortest path from s to
VinG .

e
Network Flow: Edmonds-Karp

® Claim 1: Forall v # s,t,d f (s, V) either remains same or

increases with each flow augmentation.

® Proof:

* Let f be the flow just before the first augmentation that decreases the shortest

distance of some vertex. Let f” be the flow after this augmentation.

® Let v be the vertex with minimum value of d £ (S, V) whose shortest path length was

reduced.

® Let U be the vertex just before v in the shortest path from s to v in G p.
® We have:
de(s,u) =dp(s,v) — 1
de(s,u) = de(s,u)
® Claim: (U, v) is not present in Gf.
® Proof: Since otherwise,

de(s,v) < de(s,u) +1 < dp(s,u) +1 = dp(s,v).

e
Network Flow: Edmonds-Karp

® Claim 1: Forall v # s,t,d f (s, V) either remains same or

increases with each flow augmentation.

® Proof:

* Let f be the flow just before the first augmentation that decreases the shortest

distance of some vertex. Let f” be the flow after this augmentation.

® Let v be the vertex with minimum value of d £ (S, V) whose shortest path length was

reduced.
® Let U be the vertex just before ¥ in the shortest path from s to v in G fro
® We have:
de(s,u) = dp(s,v) —1
de(s,u) = de(s,u)
e Claim: (U, V) is not present in G
® Proof: Since otherwise,
de(s,v) < de(s,u) +1 < dp(s,u) +1 = dp(s,v).
® This means that (¥, U) was in the augmenting path. This means:
de(s,v) =ds(s,u) — 1 < dp(s,u) =1 < dp(s,v) — 2

Network Flow: Edmonds-Karp

® (Claim 2:The total number of flow augmentations in the
Edmonds—Karp algorithm is O (nm).

® Proof:

® An edge is said to be critical while augmentation if it is the

bottleneck edge.
® Claim: Any edge can become critical at most (1/2) times.

® Proof:

Consider any edge (U, V). Let f be the flow just before (U, V) becomes

critical. The we have

de(s,v) = de(s,u) + 1 (1)
After this the edge (U, V) disappears. Let f~ be the flow just before the
augmentation that brings back edge (U, V). Then we have

df,(s,u) = df.(s, v) + 1 (2)

Network Flow: Edmonds-Karp

® (Claim 2:The total number of flow augmentations in the
Edmonds—Karp algorithm is O (nm).

® Proof:

e An edge is said to be critical while augmentation if it is the bottleneck edge.

* Claim: Any edge can become critical at most (11/2) times.
® Proof:

Consider any edge (U, V). Let f be the flow just before (U, V) becomes

critical. The we have
de(s,v) = de(s,u) + 1 (1)
After this the edge (U, V) disappears. Let f~ be the flow just before the
augmentation that brings back edge (U, V7). Then we have
df,(s, u) = df.(s, v) + 1 (2)
Using (1) and (2) we get:
de(s,u) = de(s,v) + 1 2 de(s,v) + 1 = de(s,u) +2
The shortest distance has increased by 2 between the instances when

(u, v) becomes critical. /

e

Network Flow: Edmonds-Karp

® (Claim 2:The total number of flow augmentations in the
Edmonds—Karp algorithm is O (nm).

® Theorem: The running time of Edmonds—Karp algorithrn is

0(nm?).

Applications of Network Flow

Bipartite Matching

Bipartite Matching

e Problem(Bipartite rnatching): Given a bipartite graph G =

(L, R, E) give a maximum matching in the graph.

o Example:

Sz

® Matching: A subset M of edges such that each node appears in

at most one edge in M .

/

Bipartite Matching

e Problem(Bipartite rnatching): Given a bipartite graph G =

(L, R, E) give a maximum matching in the graph.

o Example:

L

R

All edges have capacities 1

® Claim 1: Suppose there is an integer flow of value k in the

network graph. Then the bipartite graph has a matching of size k.

® Claim 2: Suppose the bipartite graph has a matching of size k.
Then there is integer flow of value k in the network graph.

Network Flow: Applications

Hall’s Theorem

e

Network Flow: Applications

* Given a bipartite graph G = (X, Y, E), consider the
matching problem. We say that G has perfect matching if all

vertices are present n a rnatching.

Network Flow: Applications

* Given a bipartite graph G = (X, Y, E), consider the
matching problem. We say that G has perfect matching if all

vertices are present n a rnatching.

o |X| = Y]

Network Flow: Applications

* Given a bipartite graph G = (X, Y, E), consider the
matching problem. We say that G has perfect matching if all
vertices are present In a rnatching.

o |X] = |Y]
® For a subset A of X let N(A) denote the neighboring vertices

of A in G.There is no perfect matching if there is an A,
Al > [N(A)].

Is the converse also true?

Network Flow: Applications

* Given a bipartite graph G = (X, Y, E), consider the
matching problem. We say that G has perfect matching if all
vertices are present In a matching.

o |X] = |Y]
® For a subset A of X let N(A) denote the neighboring vertices

of A in G.There is no perfect matching if there is an A,
Al > [N(4)].

Is the converse also true?

 Hall’sTheorem: Given any bipartite graph ¢ = (X, Y, E),
there is a perfect matching in G if and only if for every subset

A of vertices of X, we have |A| < |[N(4)|.

End

