
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Network Flow

Strongly polynomial time algorithm for max-flow

Network Flow: Edmonds-Karp

Max-Flow //Edmonds-Karp algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓

- Find an 𝑠 − 𝑡 path with least hop-length

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’

- return 𝑓

s

u

v

t

1000000

1

1000000

1000000

1000000

 Let 𝑑𝑓(𝑠, 𝑣) denote the hop-length of the shortest path from

𝑠 to 𝑣 in 𝐺𝑓.

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or

increases with each flow augmentation.

Network Flow: Edmonds-Karp

 Let 𝑑𝑓(𝑠, 𝑣) denote the hop-length of the shortest path from

𝑠 to 𝑣 in 𝐺𝑓.

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or

increases with each flow augmentation.

 Proof:

 Let 𝑓 be the flow just before the first augmentation that

decreases the shortest distance of some vertex. Let 𝑓’ be the

flow after this augmentation.

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose

shortest path length was reduced.

 Let 𝑢 be the vertex just before v in the shortest path from s to

𝑣 in 𝐺𝑓’.

Network Flow: Edmonds-Karp

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or

increases with each flow augmentation.

 Proof:
 Let 𝑓 be the flow just before the first augmentation that decreases the shortest

distance of some vertex. Let 𝑓’ be the flow after this augmentation.

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose shortest path length was

reduced.

 Let 𝑢 be the vertex just before 𝑣 in the shortest path from 𝑠 to 𝑣 in 𝐺𝑓’.

 We have:

 𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) − 1

 𝑑𝑓’(𝑠, 𝑢) ≥ 𝑑𝑓(𝑠, 𝑢)

 Claim: (𝑢, 𝑣) is not present in 𝐺𝑓.

 Proof: Since otherwise,

𝑑𝑓(𝑠, 𝑣) ≤ 𝑑𝑓(𝑠, 𝑢) + 1 ≤ 𝑑𝑓’(𝑠, 𝑢) + 1 = 𝑑𝑓’(𝑠, 𝑣).

Network Flow: Edmonds-Karp

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or

increases with each flow augmentation.

 Proof:
 Let 𝑓 be the flow just before the first augmentation that decreases the shortest

distance of some vertex. Let 𝑓’ be the flow after this augmentation.

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose shortest path length was

reduced.

 Let 𝑢 be the vertex just before 𝑣 in the shortest path from 𝑠 to 𝑣 in 𝐺𝑓’.

 We have:

 𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) − 1

 𝑑𝑓’(𝑠, 𝑢) ≥ 𝑑𝑓(𝑠, 𝑢)

 Claim: (𝑢, 𝑣) is not present in 𝐺𝑓.

 Proof: Since otherwise,

𝑑𝑓(𝑠, 𝑣) ≤ 𝑑𝑓(𝑠, 𝑢) + 1 ≤ 𝑑𝑓’(𝑠, 𝑢) + 1 = 𝑑𝑓’(𝑠, 𝑣).

 This means that (𝑣, 𝑢) was in the augmenting path. This means:
𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) − 1 ≤ 𝑑𝑓’(𝑠, 𝑢) − 1 ≤ 𝑑𝑓’(𝑠, 𝑣) − 2

Network Flow: Edmonds-Karp

 Claim 2: The total number of flow augmentations in the

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Proof:

 An edge is said to be critical while augmentation if it is the

bottleneck edge.

 Claim: Any edge can become critical at most (𝑛/2) times.

 Proof:

 Consider any edge (𝑢, 𝑣). Let 𝑓 be the flow just before (𝑢, 𝑣) becomes

critical. The we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1 (1)

 After this the edge (𝑢, 𝑣) disappears. Let 𝑓’ be the flow just before the

augmentation that brings back edge (𝑢, 𝑣). Then we have

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 (2)

Network Flow: Edmonds-Karp

 Claim 2: The total number of flow augmentations in the

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Proof:
 An edge is said to be critical while augmentation if it is the bottleneck edge.

 Claim: Any edge can become critical at most (𝑛/2) times.

 Proof:

 Consider any edge (𝑢, 𝑣). Let 𝑓 be the flow just before (𝑢, 𝑣) becomes

critical. The we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1 (1)

 After this the edge (𝑢, 𝑣) disappears. Let 𝑓’ be the flow just before the

augmentation that brings back edge (𝑢, 𝑣). Then we have

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 (2)

 Using (1) and (2) we get:

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 ≥ 𝑑𝑓(𝑠, 𝑣) + 1 = 𝑑𝑓(𝑠, 𝑢) + 2

 The shortest distance has increased by 2 between the instances when

(𝑢, 𝑣) becomes critical.

Network Flow: Edmonds-Karp

 Claim 2: The total number of flow augmentations in the

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Theorem: The running time of Edmonds-Karp algorithm is

𝑂(𝑛𝑚2).

Network Flow: Edmonds-Karp

Applications of Network Flow

Bipartite Matching

Bipartite Matching

 Problem(Bipartite matching): Given a bipartite graph 𝐺 =
(𝐿, 𝑅, 𝐸) give a maximum matching in the graph.

 Example:

 Matching: A subset 𝑀 of edges such that each node appears in

at most one edge in 𝑀.

L R

Bipartite Matching

 Problem(Bipartite matching): Given a bipartite graph 𝐺 =
(𝐿, 𝑅, 𝐸) give a maximum matching in the graph.

 Example:

L R

s t

All edges have capacities 1

 Claim 1: Suppose there is an integer flow of value 𝑘 in the

network graph. Then the bipartite graph has a matching of size 𝑘.

 Claim 2: Suppose the bipartite graph has a matching of size 𝑘.

Then there is integer flow of value 𝑘 in the network graph.

Network Flow: Applications

Hall’s Theorem

Network Flow: Applications

 Given a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), consider the

matching problem. We say that 𝐺 has perfect matching if all

vertices are present in a matching.

Network Flow: Applications

 Given a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), consider the

matching problem. We say that 𝐺 has perfect matching if all

vertices are present in a matching.

 |𝑋| = |𝑌|

Network Flow: Applications

 Given a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), consider the

matching problem. We say that 𝐺 has perfect matching if all

vertices are present in a matching.

 |𝑋| = |𝑌|

 For a subset 𝐴 of 𝑋 let 𝑁(𝐴) denote the neighboring vertices

of 𝐴 in 𝐺. There is no perfect matching if there is an 𝐴,

|𝐴| > |𝑁(𝐴)|.
 Is the converse also true?

Network Flow: Applications

 Given a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), consider the

matching problem. We say that 𝐺 has perfect matching if all

vertices are present in a matching.

 |𝑋| = |𝑌|

 For a subset 𝐴 of 𝑋 let 𝑁(𝐴) denote the neighboring vertices

of 𝐴 in 𝐺. There is no perfect matching if there is an 𝐴,

|𝐴| > |𝑁(𝐴)|.
 Is the converse also true?

 Hall’s Theorem: Given any bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸),
there is a perfect matching in 𝐺 if and only if for every subset

𝐴 of vertices of 𝑋, we have |𝐴| ≤ |𝑁(𝐴)|.

End

