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Network Flow

Strongly polynomial time algorithm for max-flow



Network Flow: Edmonds-Karp

Max-Flow //Edmonds-Karp algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓

- Find an 𝑠 − 𝑡 path with least hop-length

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’

- return 𝑓
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 Let 𝑑𝑓(𝑠, 𝑣) denote the hop-length of the shortest path from

𝑠 to 𝑣 in 𝐺𝑓.

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or 

increases with each flow augmentation. 
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 Let 𝑑𝑓(𝑠, 𝑣) denote the hop-length of the shortest path from 

𝑠 to 𝑣 in 𝐺𝑓.

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or 

increases with each flow augmentation.

 Proof:  

 Let 𝑓 be the flow just before the first augmentation that 

decreases the shortest distance of some vertex. Let 𝑓’ be the 

flow after this augmentation. 

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose 

shortest path length was reduced. 

 Let 𝑢 be the vertex just before v in the shortest path from s to 

𝑣 in 𝐺𝑓’.
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 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or 

increases with each flow augmentation.

 Proof:  
 Let 𝑓 be the flow just before the first augmentation that decreases the shortest 

distance of some vertex. Let 𝑓’ be the flow after this augmentation. 

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose shortest path length was 

reduced. 

 Let 𝑢 be the vertex just before 𝑣 in the shortest path from 𝑠 to 𝑣 in 𝐺𝑓’.

 We have: 

 𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) − 1

 𝑑𝑓’(𝑠, 𝑢) ≥ 𝑑𝑓(𝑠, 𝑢)

 Claim: (𝑢, 𝑣) is not present in 𝐺𝑓.

 Proof: Since otherwise, 

𝑑𝑓(𝑠, 𝑣) ≤ 𝑑𝑓(𝑠, 𝑢) + 1 ≤ 𝑑𝑓’(𝑠, 𝑢) + 1 = 𝑑𝑓’(𝑠, 𝑣).
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 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or 

increases with each flow augmentation.

 Proof:  
 Let 𝑓 be the flow just before the first augmentation that decreases the shortest 

distance of some vertex. Let 𝑓’ be the flow after this augmentation. 

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose shortest path length was 

reduced. 

 Let 𝑢 be the vertex just before 𝑣 in the shortest path from 𝑠 to 𝑣 in 𝐺𝑓’.

 We have: 

 𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) − 1

 𝑑𝑓’(𝑠, 𝑢) ≥ 𝑑𝑓(𝑠, 𝑢)

 Claim: (𝑢, 𝑣) is not present in 𝐺𝑓.

 Proof: Since otherwise, 

𝑑𝑓(𝑠, 𝑣) ≤ 𝑑𝑓(𝑠, 𝑢) + 1 ≤ 𝑑𝑓’(𝑠, 𝑢) + 1 = 𝑑𝑓’(𝑠, 𝑣).

 This means that (𝑣, 𝑢) was in the augmenting path. This means: 
𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) − 1 ≤ 𝑑𝑓’(𝑠, 𝑢) − 1 ≤ 𝑑𝑓’(𝑠, 𝑣) − 2
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 Claim 2: The total number of flow augmentations in the 

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Proof:  

 An edge is said to be critical while augmentation if it is the 

bottleneck edge. 

 Claim: Any edge can become critical at most (𝑛/2) times. 

 Proof: 

 Consider any edge (𝑢, 𝑣). Let 𝑓 be the flow just before (𝑢, 𝑣) becomes 

critical. The we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1 (1)

 After this the edge (𝑢, 𝑣) disappears. Let 𝑓’ be the flow just before the 

augmentation that brings back edge (𝑢, 𝑣). Then we have

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 (2)
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 Claim 2: The total number of flow augmentations in the 

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Proof:  
 An edge is said to be critical while augmentation if it is the bottleneck edge. 

 Claim: Any edge can become critical at most (𝑛/2) times. 

 Proof: 

 Consider any edge (𝑢, 𝑣). Let 𝑓 be the flow just before (𝑢, 𝑣) becomes 

critical. The we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1 (1)

 After this the edge (𝑢, 𝑣) disappears. Let 𝑓’ be the flow just before the 

augmentation that brings back edge (𝑢, 𝑣). Then we have

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 (2)

 Using (1) and (2) we get:

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 ≥ 𝑑𝑓(𝑠, 𝑣) + 1 = 𝑑𝑓(𝑠, 𝑢) + 2

 The shortest distance has increased by 2 between the instances when 

(𝑢, 𝑣) becomes critical. 
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 Claim 2: The total number of flow augmentations in the 

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Theorem: The running time of Edmonds-Karp algorithm is 

𝑂(𝑛𝑚2).

Network Flow: Edmonds-Karp



Applications of Network Flow

Bipartite Matching



Bipartite Matching

 Problem(Bipartite matching): Given a bipartite graph 𝐺 =
(𝐿, 𝑅, 𝐸) give a maximum matching in the graph. 

 Example: 

 Matching: A subset 𝑀 of edges such that each node appears in 

at most one edge in 𝑀.
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Bipartite Matching

 Problem(Bipartite matching): Given a bipartite graph 𝐺 =
(𝐿, 𝑅, 𝐸) give a maximum matching in the graph. 

 Example: 
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All edges have capacities 1

 Claim 1: Suppose there is an integer flow of value 𝑘 in the 

network graph. Then the bipartite graph has a matching of size 𝑘.

 Claim 2: Suppose the bipartite graph has a matching of size 𝑘. 

Then there is integer flow of value 𝑘 in the network graph. 



Network Flow: Applications

Hall’s Theorem



Network Flow: Applications

 Given a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), consider the 

matching problem. We say that 𝐺 has perfect matching if all 

vertices are present in a matching.



Network Flow: Applications

 Given a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), consider the 

matching problem. We say that 𝐺 has perfect matching if all 

vertices are present in a matching.

 |𝑋| = |𝑌|



Network Flow: Applications

 Given a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), consider the 

matching problem. We say that 𝐺 has perfect matching if all 

vertices are present in a matching.

 |𝑋| = |𝑌|

 For a subset 𝐴 of 𝑋 let 𝑁(𝐴) denote the neighboring vertices 

of 𝐴 in 𝐺. There is no perfect matching if there is an 𝐴,

|𝐴| > |𝑁(𝐴)|.
 Is the converse also true?



Network Flow: Applications

 Given a bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), consider the 

matching problem. We say that 𝐺 has perfect matching if all 

vertices are present in a matching.

 |𝑋| = |𝑌|

 For a subset 𝐴 of 𝑋 let 𝑁(𝐴) denote the neighboring vertices 

of 𝐴 in 𝐺. There is no perfect matching if there is an 𝐴,

|𝐴| > |𝑁(𝐴)|. 
 Is the converse also true?

 Hall’s Theorem: Given any bipartite graph 𝐺 = (𝑋, 𝑌, 𝐸), 
there is a perfect matching in 𝐺 if and only if for every subset 

𝐴 of vertices of 𝑋, we have |𝐴| ≤ |𝑁(𝐴)|.
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