
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

 For an 𝑠 − 𝑡 flow 𝑓 and a positive integer ∆, let 𝐺𝑓(∆) denote a

subset of the residual graph 𝐺𝑓 consisting only of edges with

residual capacity of at least ∆.

 Idea: Instead of finding augmenting paths in 𝐺𝑓, we will find

augmenting paths in 𝐺𝑓(∆) for smaller and smaller values of ∆.

Network Flow

Scaling-Max-Flow

- Start with an 𝑠 − 𝑡 flow such that for all 𝑒, 𝑓(𝑒) = 0

- ∆=largest power of 2 smaller than 𝐶

- while ∆ ≥ 1

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓(∆)

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓(∆) to 𝐺𝑓’(∆)

- ∆ = ∆/2

-return 𝑓

 Claim 1: The algorithm returns max flow on termination.

Network Flow

Scaling-Max-Flow

- Start with an 𝑠 − 𝑡 flow such that for all 𝑒, 𝑓(𝑒) = 0

- ∆=largest power of 2 smaller than 𝐶

- while ∆ ≥ 1

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓(∆)

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓(∆) to 𝐺𝑓’(∆)

- ∆ = ∆/2

-return 𝑓

 Claim 1: The algorithm returns max flow on termination.

 Claim 2: The while loop runs for at most (1 + log(𝐶)) steps.

Network Flow

Scaling-Max-Flow

- Start with an 𝑠 − 𝑡 flow such that for all 𝑒, 𝑓(𝑒) = 0

- ∆=largest power of 2 smaller than 𝐶

- while ∆ ≥ 1

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓(∆)

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓(∆) to 𝐺𝑓’(∆)

- ∆ = ∆/2

-return 𝑓

 Claim 1: The algorithm returns max flow on termination.

 Claim 2: The while loop runs for at most (1 + log(𝐶)) steps.

 Claim 3: Each augmentation increases the flow by at least ∆.

Network Flow

Scaling-Max-Flow

- Start with an 𝑠 − 𝑡 flow such that for all 𝑒, 𝑓(𝑒) = 0

- ∆=largest power of 2 smaller than 𝐶

- while ∆ ≥ 1

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓(∆)

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓(∆) to 𝐺𝑓’(∆)

- ∆ = ∆/2

-return 𝑓

 Claim 1: The algorithm returns max flow on termination.

 Claim 2: The while loop runs for at most (1 + log(𝐶)) steps.

 Claim 3: Each augmentation increases the flow by at least ∆.

 Claim 4: Let 𝑓 be the flow at the end of a ∆-scaling phase. Then

there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) such that 𝑐 𝐴, 𝐵 ≤ 𝑣 𝑓 + 𝑚 ⋅ ∆.

 Corollary: The max flow in the graph has value at most

(𝑣(𝑓) + 𝑚 ⋅ ∆).

Network Flow

s t

𝐴 (all vertices reachable from 𝑠 in 𝐺𝑓(∆).

𝑓(𝑒) > 𝑐(𝑒) − ∆

𝑓(𝑒) < ∆

mBAc

ec

efeffv

AoeAofoute

AoeAofoute

),(

))((

)()()(

int

int

 Claim 1: The algorithm returns max flow on termination.

 Claim 2: The while loop runs for at most (1 + log(𝐶)) steps.

 Claim 3: Each augmentation increases the flow by at least ∆.

 Claim 4: Let 𝑓 be the flow at the end of a ∆-scaling phase. Then

there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) such that 𝑐 𝐴, 𝐵 ≤ 𝑣 𝑓 + 𝑚 ⋅ ∆.

 Corollary: The max flow in the graph has value at most

(𝑣(𝑓) + 𝑚 ⋅ ∆).

 Claim 5: The total number of iterations of the inner while

loop is at most 2𝑚.

 Claim 6: The running time of Scaling-max-flow algorithm is

𝑂(𝑚2 ⋅ log(𝐶)).

Network Flow

Network Flow

Strongly polynomial time algorithm for max-flow

Network Flow: Edmonds-Karp

Max-Flow //Edmonds-Karp algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓

- Find an 𝑠 − 𝑡 path with least hop-length

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’

- return 𝑓

s

u

v

t

1000000

1

1000000

1000000

1000000

 Let 𝑑𝑓(𝑠, 𝑣) denote the hop-length of the shortest path from

𝑠 to 𝑣 in 𝐺𝑓.

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or

increases with each flow augmentation.

Network Flow: Edmonds-Karp

 Let 𝑑𝑓(𝑠, 𝑣) denote the hop-length of the shortest path from

𝑠 to 𝑣 in 𝐺𝑓.

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or

increases with each flow augmentation.

 Proof:

 Let 𝑓 be the flow just before the first augmentation that

decreases the shortest distance of some vertex. Let 𝑓’ be the

flow after this augmentation.

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose

shortest path length was reduced.

 Let 𝑢 be the vertex just before v in the shortest path from s to

𝑣 in 𝐺𝑓’.

Network Flow: Edmonds-Karp

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or

increases with each flow augmentation.

 Proof:
 Let 𝑓 be the flow just before the first augmentation that decreases the shortest

distance of some vertex. Let 𝑓’ be the flow after this augmentation.

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose shortest path length was

reduced.

 Let 𝑢 be the vertex just before 𝑣 in the shortest path from 𝑠 to 𝑣 in 𝐺𝑓’.

 We have:

 𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) − 1

 𝑑𝑓’(𝑠, 𝑢) ≥ 𝑑𝑓(𝑠, 𝑢)

 Claim: (𝑢, 𝑣) is not present in 𝐺𝑓.

 Proof: Since otherwise,

𝑑𝑓(𝑠, 𝑣) ≤ 𝑑𝑓(𝑠, 𝑢) + 1 ≤ 𝑑𝑓’(𝑠, 𝑢) + 1 = 𝑑𝑓’(𝑠, 𝑣).

Network Flow: Edmonds-Karp

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or

increases with each flow augmentation.

 Proof:
 Let 𝑓 be the flow just before the first augmentation that decreases the shortest

distance of some vertex. Let 𝑓’ be the flow after this augmentation.

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose shortest path length was

reduced.

 Let 𝑢 be the vertex just before 𝑣 in the shortest path from 𝑠 to 𝑣 in 𝐺𝑓’.

 We have:

 𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) − 1

 𝑑𝑓’(𝑠, 𝑢) ≥ 𝑑𝑓(𝑠, 𝑢)

 Claim: (𝑢, 𝑣) is not present in 𝐺𝑓.

 Proof: Since otherwise,

𝑑𝑓(𝑠, 𝑣) ≤ 𝑑𝑓(𝑠, 𝑢) + 1 ≤ 𝑑𝑓’(𝑠, 𝑢) + 1 = 𝑑𝑓’(𝑠, 𝑣).

 This means that (𝑣, 𝑢) was in the augmenting path. This means:
𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) − 1 ≤ 𝑑𝑓’(𝑠, 𝑢) − 1 ≤ 𝑑𝑓’(𝑠, 𝑣) − 2

Network Flow: Edmonds-Karp

 Claim 2: The total number of flow augmentations in the

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Proof:

 An edge is said to be critical while augmentation if it is the

bottleneck edge.

 Claim: Any edge can become critical at most (𝑛/2) times.

 Proof:

 Consider any edge (𝑢, 𝑣). Let 𝑓 be the flow just before (𝑢, 𝑣) becomes

critical. The we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1 (1)

 After this the edge (𝑢, 𝑣) disappears. Let 𝑓’ be the flow just before the

augmentation that brings back edge (𝑢, 𝑣). Then we have

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 (2)

Network Flow: Edmonds-Karp

 Claim 2: The total number of flow augmentations in the

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Proof:
 An edge is said to be critical while augmentation if it is the bottleneck edge.

 Claim: Any edge can become critical at most (𝑛/2) times.

 Proof:

 Consider any edge (𝑢, 𝑣). Let 𝑓 be the flow just before (𝑢, 𝑣) becomes

critical. The we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1 (1)

 After this the edge (𝑢, 𝑣) disappears. Let 𝑓’ be the flow just before the

augmentation that brings back edge (𝑢, 𝑣). Then we have

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 (2)

 Using (1) and (2) we get:

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 ≥ 𝑑𝑓(𝑠, 𝑣) + 1 = 𝑑𝑓(𝑠, 𝑢) + 2

 The shortest distance has increased by 2 between the instances when

(𝑢, 𝑣) becomes critical.

Network Flow: Edmonds-Karp

 Claim 2: The total number of flow augmentations in the

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Theorem: The running time of Edmonds-Karp algorithm is

𝑂(𝑛𝑚2).

Network Flow: Edmonds-Karp

End

