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 For an 𝑠 − 𝑡 flow 𝑓 and a positive integer ∆, let 𝐺𝑓(∆) denote a 

subset of the residual graph 𝐺𝑓 consisting only of edges with 

residual capacity of at least ∆.

 Idea: Instead of finding augmenting paths in 𝐺𝑓, we will find 

augmenting paths in 𝐺𝑓(∆) for smaller and smaller values of ∆.

Network Flow

Scaling-Max-Flow

- Start with an 𝑠 − 𝑡 flow such that for all 𝑒, 𝑓(𝑒) = 0

- ∆=largest power of 2 smaller than 𝐶

- while ∆ ≥ 1

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓(∆)

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓(∆) to 𝐺𝑓’(∆)

- ∆ = ∆/2

-return 𝑓



 Claim 1: The algorithm returns max flow on termination. 
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 Claim 1: The algorithm returns max flow on termination.

 Claim 2: The while loop runs for at most (1 +   log(𝐶) ) steps.
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 Claim 1: The algorithm returns max flow on termination.

 Claim 2: The while loop runs for at most (1 +   log(𝐶) ) steps.

 Claim 3: Each augmentation increases the flow by at least ∆.
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 Claim 1: The algorithm returns max flow on termination.

 Claim 2: The while loop runs for at most (1 +   log(𝐶) ) steps.

 Claim 3: Each augmentation increases the flow by at least ∆.

 Claim 4: Let 𝑓 be the flow at the end of a ∆-scaling phase. Then 

there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) such that 𝑐 𝐴, 𝐵 ≤ 𝑣 𝑓 + 𝑚 ⋅ ∆.

 Corollary: The max flow in the graph has value at most 

(𝑣(𝑓) + 𝑚 ⋅ ∆).
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𝐴 (all vertices reachable from 𝑠 in 𝐺𝑓(∆).

𝑓(𝑒) > 𝑐(𝑒) − ∆

𝑓(𝑒) < ∆
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 Claim 1: The algorithm returns max flow on termination.

 Claim 2: The while loop runs for at most (1 +   log(𝐶) ) steps.

 Claim 3: Each augmentation increases the flow by at least ∆.

 Claim 4: Let 𝑓 be the flow at the end of a ∆-scaling phase. Then 

there is an 𝑠 − 𝑡 cut (𝐴, 𝐵) such that 𝑐 𝐴, 𝐵 ≤ 𝑣 𝑓 + 𝑚 ⋅ ∆.

 Corollary: The max flow in the graph has value at most 

(𝑣(𝑓) + 𝑚 ⋅ ∆).

 Claim 5: The total number of iterations of the inner while 

loop is at most 2𝑚.

 Claim 6: The running time of Scaling-max-flow algorithm is 

𝑂(𝑚2 ⋅ log(𝐶)).

Network Flow



Network Flow

Strongly polynomial time algorithm for max-flow



Network Flow: Edmonds-Karp

Max-Flow //Edmonds-Karp algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓

- Find an 𝑠 − 𝑡 path with least hop-length

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’

- return 𝑓
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 Let 𝑑𝑓(𝑠, 𝑣) denote the hop-length of the shortest path from

𝑠 to 𝑣 in 𝐺𝑓.

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or 

increases with each flow augmentation. 

Network Flow: Edmonds-Karp



 Let 𝑑𝑓(𝑠, 𝑣) denote the hop-length of the shortest path from 

𝑠 to 𝑣 in 𝐺𝑓.

 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or 

increases with each flow augmentation.

 Proof:  

 Let 𝑓 be the flow just before the first augmentation that 

decreases the shortest distance of some vertex. Let 𝑓’ be the 

flow after this augmentation. 

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose 

shortest path length was reduced. 

 Let 𝑢 be the vertex just before v in the shortest path from s to 

𝑣 in 𝐺𝑓’.
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 Claim 1: For all 𝑣 ≠ 𝑠, 𝑡, 𝑑𝑓(𝑠, 𝑣) either remains same or 

increases with each flow augmentation.

 Proof:  
 Let 𝑓 be the flow just before the first augmentation that decreases the shortest 

distance of some vertex. Let 𝑓’ be the flow after this augmentation. 

 Let 𝑣 be the vertex with minimum value of 𝑑𝑓’(𝑠, 𝑣) whose shortest path length was 

reduced. 

 Let 𝑢 be the vertex just before 𝑣 in the shortest path from 𝑠 to 𝑣 in 𝐺𝑓’.

 We have: 

 𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) − 1

 𝑑𝑓’(𝑠, 𝑢) ≥ 𝑑𝑓(𝑠, 𝑢)

 Claim: (𝑢, 𝑣) is not present in 𝐺𝑓.

 Proof: Since otherwise, 

𝑑𝑓(𝑠, 𝑣) ≤ 𝑑𝑓(𝑠, 𝑢) + 1 ≤ 𝑑𝑓’(𝑠, 𝑢) + 1 = 𝑑𝑓’(𝑠, 𝑣).
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 We have: 

 𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) − 1

 𝑑𝑓’(𝑠, 𝑢) ≥ 𝑑𝑓(𝑠, 𝑢)

 Claim: (𝑢, 𝑣) is not present in 𝐺𝑓.

 Proof: Since otherwise, 

𝑑𝑓(𝑠, 𝑣) ≤ 𝑑𝑓(𝑠, 𝑢) + 1 ≤ 𝑑𝑓’(𝑠, 𝑢) + 1 = 𝑑𝑓’(𝑠, 𝑣).

 This means that (𝑣, 𝑢) was in the augmenting path. This means: 
𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) − 1 ≤ 𝑑𝑓’(𝑠, 𝑢) − 1 ≤ 𝑑𝑓’(𝑠, 𝑣) − 2
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 Claim 2: The total number of flow augmentations in the 

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Proof:  

 An edge is said to be critical while augmentation if it is the 

bottleneck edge. 

 Claim: Any edge can become critical at most (𝑛/2) times. 

 Proof: 

 Consider any edge (𝑢, 𝑣). Let 𝑓 be the flow just before (𝑢, 𝑣) becomes 

critical. The we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1 (1)

 After this the edge (𝑢, 𝑣) disappears. Let 𝑓’ be the flow just before the 

augmentation that brings back edge (𝑢, 𝑣). Then we have

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 (2)
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 Claim 2: The total number of flow augmentations in the 

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Proof:  
 An edge is said to be critical while augmentation if it is the bottleneck edge. 

 Claim: Any edge can become critical at most (𝑛/2) times. 

 Proof: 

 Consider any edge (𝑢, 𝑣). Let 𝑓 be the flow just before (𝑢, 𝑣) becomes 

critical. The we have

𝑑𝑓(𝑠, 𝑣) = 𝑑𝑓(𝑠, 𝑢) + 1 (1)

 After this the edge (𝑢, 𝑣) disappears. Let 𝑓’ be the flow just before the 

augmentation that brings back edge (𝑢, 𝑣). Then we have

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 (2)

 Using (1) and (2) we get:

𝑑𝑓’(𝑠, 𝑢) = 𝑑𝑓’(𝑠, 𝑣) + 1 ≥ 𝑑𝑓(𝑠, 𝑣) + 1 = 𝑑𝑓(𝑠, 𝑢) + 2

 The shortest distance has increased by 2 between the instances when 

(𝑢, 𝑣) becomes critical. 

Network Flow: Edmonds-Karp



 Claim 2: The total number of flow augmentations in the 

Edmonds–Karp algorithm is 𝑂(𝑛𝑚).

 Theorem: The running time of Edmonds-Karp algorithm is 

𝑂(𝑛𝑚2).
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