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Network Flow

® Foran S — t flow f and a positive integer A, let G f (A) denote a
subset of the residual graph G f consisting only of edges with
residual capacity of at least A.

® Idea: Instead of finding augmenting paths in G s WE will find
augmenting paths in G ¢(A) for smaller and smaller values of A.

Scaling-Max-Flow
- Start with an § — t flow such that forall e, f(e) = 0
- A=largest power of 2 smaller than C
-whileA> 1

- while there is an § — t path P in G((A)
- Execute the augmenting path algorithm to obtain f”
- Update f to f~ and Gf(A) to Gf»(A)

-A= A/2

-return f
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Network Flow

® (Claim 1:The algorithrn returns max flow on termination.

® Claim 2:The while loop runs for at most (1 + [log(C)]) steps.

e Claim 3: Each augmentation increases the flow by at least A,

e Claim 4: Let f be the flow at the end of a A—scaling phase. Then
there is an s — t cut (4, B) such that c(4,B) < v(f) + m - A.

° Corollary: The max flow in the graph has value at most

(v(f) + m-A).
v(f)= > f(e)- > f(e) fle) <A

eoutof A einto A
> > (cle)-A)- DA v
eoutof A einto A @
>
>Cc(A,B)—m-A vt

A (all vertices reachable from s in G (4).

/




Network Flow

® (Claim 1:The algorithrn returns max flow on termination.

® Claim 2:The while loop runs for at most (1 + [log(C)]) steps.

e Claim 3: Each augmentation increases the flow by at least A,

e Claim 4: Let f be the flow at the end of a A—scaling phase. Then
there is an s — t cut (4, B) such that c(4,B) < v(f) + m - A.
° Corollary: The max flow in the graph has value at most

(v(f) + m-A).

e Claim 5: The total number of iterations of the inner while

loop is at most 2m.

® Claim 6:The running time of Scaling—max—ﬂow algorithm is

O(m? - log(()).




Network Flow

Strongly polynomial time algorithm for max-flow




Network Flow: Edmonds-Karp

Max-Flow //Edmonds-Karp algorithm
- Start with a flow f such that f(e) = 0
- while there is an S — t path P in Gf
- Find an § — € path with least hop-length
- Execute the augmenting path algorithm to obtain f”
- Update f to f~ and Gf to Gf’

- return f

1000000 000000

1000000




Network Flow: Edmonds-Karp

° Letd f (S, V) denote the hop-length of the shortest path from
StoVin Gy.

® Claim 1: Forall v # s,t,d f (s, V) either remains same or

increases with each flow augmentation.




Network Flow: Edmonds-Karp

° Letd f (S, V) denote the hop-length of the shortest path from
StoVin Gy.

® Claim 1: Forall v # s,t,d f (s, V) either remains same or

increases with each flow augmentation.

® Proof:

® Let f be the flow just before the first augmentation that
decreases the shortest distance of some vertex. Let f~ be the
flow after this augmentation.

® Let U be the vertex with minimum value of d f»(S, V) whose
shortest path length was reduced.

® Let U be the vertex just before v in the shortest path from s to
VinG .




e
Network Flow: Edmonds-Karp

® Claim 1: Forall v # s,t,d f (s, V) either remains same or

increases with each flow augmentation.

® Proof:

* Let f be the flow just before the first augmentation that decreases the shortest

distance of some vertex. Let f” be the flow after this augmentation.

® Let v be the vertex with minimum value of d £ (S, V) whose shortest path length was

reduced.

® Let U be the vertex just before v in the shortest path from s to v in G p.
® We have:
de(s,u) =dp(s,v) — 1
de(s,u) = de(s,u)
® Claim: (U, v) is not present in Gf.
® Proof: Since otherwise,

de(s,v) < de(s,u) +1 < dp(s,u) +1 = dp(s,v).
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Network Flow: Edmonds-Karp

® Claim 1: Forall v # s,t,d f (s, V) either remains same or

increases with each flow augmentation.

® Proof:

* Let f be the flow just before the first augmentation that decreases the shortest

distance of some vertex. Let f” be the flow after this augmentation.

® Let v be the vertex with minimum value of d £ (S, V) whose shortest path length was

reduced.
® Let U be the vertex just before ¥ in the shortest path from s to v in G fro
® We have:
de(s,u) = dp(s,v) —1
de(s,u) = de(s,u)
e Claim: (U, V) is not present in G
® Proof: Since otherwise,
de(s,v) < de(s,u) +1 < dp(s,u) +1 = dp(s,v).
® This means that (¥, U) was in the augmenting path. This means:
de(s,v) =ds(s,u) — 1 < dp(s,u) =1 < dp(s,v) — 2




Network Flow: Edmonds-Karp

® (Claim 2:The total number of flow augmentations in the
Edmonds—Karp algorithm is O (nm).

® Proof:

® An edge is said to be critical while augmentation if it is the

bottleneck edge.
® Claim: Any edge can become critical at most (1/2) times.

® Proof:

Consider any edge (U, V). Let f be the flow just before (U, V) becomes

critical. The we have

de(s,v) = de(s,u) + 1 (1)
After this the edge (U, V) disappears. Let f~ be the flow just before the
augmentation that brings back edge (U, V). Then we have

df,(s,u) = df.(s, v) + 1 (2)




Network Flow: Edmonds-Karp

® (Claim 2:The total number of flow augmentations in the
Edmonds—Karp algorithm is O (nm).

® Proof:

e An edge is said to be critical while augmentation if it is the bottleneck edge.

* Claim: Any edge can become critical at most (11/2) times.
® Proof:

Consider any edge (U, V). Let f be the flow just before (U, V) becomes

critical. The we have
de(s,v) = de(s,u) + 1 (1)
After this the edge (U, V) disappears. Let f~ be the flow just before the
augmentation that brings back edge (U, V7). Then we have
df,(s, u) = df.(s, v) + 1 (2)
Using (1) and (2) we get:
de(s,u) = de(s,v) + 1 2 de(s,v) + 1 = de(s,u) +2
The shortest distance has increased by 2 between the instances when

(u, v) becomes critical. /
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Network Flow: Edmonds-Karp

® (Claim 2:The total number of flow augmentations in the
Edmonds—Karp algorithm is O (nm).

® Theorem: The running time of Edmonds—Karp algorithrn is

0(nm?).
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