CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal

CSE, IIT Delhi

- For an s t flow f and a positive integer Δ , let $G_f(\Delta)$ denote a subset of the residual graph G_f consisting only of edges with residual capacity of at least Δ .
- <u>Idea</u>: Instead of finding augmenting paths in G_f , we will find augmenting paths in $G_f(\Delta)$ for smaller and smaller values of Δ .

Scaling-Max-Flow

- Start with an s t flow such that for all e, f(e) = 0
- Δ =largest power of 2 smaller than C
- while $\Delta \geq 1$
 - while there is an s t path P in $G_f(\Delta)$
 - Execute the augmenting path algorithm to obtain f^\prime
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$

 $-\Delta = \Delta/2$

-return f

• <u>Claim 1</u>: The algorithm returns max flow on termination.

Scaling-Max-Flow

- Start with an s - t flow such that for all e, f(e) = 0

- Δ = largest power of 2 smaller than *C*

- while $\Delta \geq 1$
 - while there is an s t path P in $G_f(\Delta)$
 - Execute the augmenting path algorithm to obtain f'
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$

 $-\Delta = \Delta/2$

-return f

- <u>Claim 1</u>: The algorithm returns max flow on termination.
- <u>Claim 2</u>: The while loop runs for at most $(1 + \lceil \log(C) \rceil)$ steps.

- <u>Claim 1</u>: The algorithm returns max flow on termination.
- <u>Claim 2</u>: The while loop runs for at most $(1 + \lceil \log(C) \rceil)$ steps.
- <u>Claim 3</u>: Each augmentation increases the flow by at least Δ .

- <u>Claim 1</u>: The algorithm returns max flow on termination.
- <u>Claim 2</u>: The while loop runs for at most $(1 + \lceil \log(C) \rceil)$ steps.
- <u>Claim 3</u>: Each augmentation increases the flow by at least Δ .
- <u>Claim 4</u>: Let f be the flow at the end of a Δ -scaling phase. Then there is an s t cut (A, B) such that $c(A, B) \leq v(f) + m \cdot \Delta$.

• <u>Corollary</u>: The max flow in the graph has value at most $(v(f) + m \cdot \Delta)$.

- <u>Claim 1</u>: The algorithm returns max flow on termination.
- <u>Claim 2</u>: The while loop runs for at most $(1 + \lceil \log(C) \rceil)$ steps.
- <u>Claim 3</u>: Each augmentation increases the flow by at least Δ .
- <u>Claim 4</u>: Let f be the flow at the end of a Δ -scaling phase. Then there is an s t cut (A, B) such that $c(A, B) \leq v(f) + m \cdot \Delta$.
 - <u>Corollary</u>: The max flow in the graph has value at most $(v(f) + m \cdot \Delta)$.
- <u>Claim 5</u>: The total number of iterations of the inner while loop is at most 2m.
- <u>Claim 6</u>: The running time of Scaling-max-flow algorithm is $O(m^2 \cdot \log(C))$.

Strongly polynomial time algorithm for max-flow

- Let d_f(s, v) denote the hop-length of the shortest path from s to v in G_f.
- <u>Claim 1</u>: For all $v \neq s, t, d_f(s, v)$ either remains same or increases with each flow augmentation.

- Let d_f(s, v) denote the hop-length of the shortest path from s to v in G_f.
- <u>Claim 1</u>: For all $v \neq s, t, d_f(s, v)$ either remains same or increases with each flow augmentation.
- Proof:
 - Let f be the flow just before the first augmentation that decreases the shortest distance of some vertex. Let f' be the flow after this augmentation.
 - Let v be the vertex with minimum value of $d_{f'}(s, v)$ whose shortest path length was reduced.
 - Let u be the vertex just before ${\bf v}$ in the shortest path from ${\bf s}$ to v in $G_{f'.}$

- <u>Claim 1</u>: For all $v \neq s, t, d_f(s, v)$ either remains same or increases with each flow augmentation.
- Proof:
 - Let f be the flow just before the first augmentation that decreases the shortest distance of some vertex. Let f' be the flow after this augmentation.
 - Let v be the vertex with minimum value of $d_{f'}(s, v)$ whose shortest path length was reduced.
 - Let u be the vertex just before v in the shortest path from s to v in $G_{f'}$.
 - We have:
 - $d_{f'}(s, u) = d_{f'}(s, v) 1$
 - $d_{f'}(s, u) \ge d_f(s, u)$
 - <u>Claim</u>: (u, v) is not present in G_f .
 - <u>Proof</u>: Since otherwise, $d_f(s,v) \leq d_f(s,u) + 1 \leq d_{f'}(s,u) + 1 = d_{f'}(s,v).$

- <u>Claim 1</u>: For all $v \neq s, t, d_f(s, v)$ either remains same or increases with each flow augmentation.
- Proof:
 - Let f be the flow just before the first augmentation that decreases the shortest distance of some vertex. Let f' be the flow after this augmentation.
 - Let v be the vertex with minimum value of $d_{f'}(s, v)$ whose shortest path length was reduced.
 - Let u be the vertex just before v in the shortest path from s to v in $G_{f'}$.
 - We have:
 - $d_{f'}(s, u) = d_{f'}(s, v) 1$ • $d_{f'}(s, u) \ge d_f(s, u)$
 - <u>Claim</u>: (u, v) is not present in G_f .
 - <u>Proof</u>: Since otherwise,

 $d_f(s,v) \leq d_f(s,u) + 1 \leq d_{f'}(s,u) + 1 = d_{f'}(s,v).$

• This means that (v, u) was in the augmenting path. This means: $d_f(s, v) = d_f(s, u) - 1 \le d_{f'}(s, u) - 1 \le d_{f'}(s, v) - 2$

- <u>Claim 2</u>: The total number of flow augmentations in the Edmonds–Karp algorithm is O(nm).
- Proof:
 - An edge is said to be critical while augmentation if it is the bottleneck edge.
 - <u>Claim</u>: Any edge can become critical at most (n/2) times.
 - <u>Proof</u>:
 - Consider any edge (u, v). Let f be the flow just before (u, v) becomes critical. The we have

$$d_f(s, v) = d_f(s, u) + 1$$
 (1)

• After this the edge (u, v) disappears. Let f' be the flow just before the augmentation that brings back edge (u, v). Then we have

$$d_{f'}(s,u) = d_{f'}(s,v) + 1$$
 (2)

- <u>Claim 2</u>: The total number of flow augmentations in the Edmonds-Karp algorithm is O(nm).
- Proof:
 - An edge is said to be critical while augmentation if it is the bottleneck edge.
 - <u>Claim</u>: Any edge can become critical at most (n/2) times.
 - <u>Proof</u>:
 - Consider any edge (u, v). Let f be the flow just before (u, v) becomes critical. The we have

$$d_f(s, v) = d_f(s, u) + 1$$
 (1)

• After this the edge (u, v) disappears. Let f' be the flow just before the augmentation that brings back edge (u, v). Then we have

$$d_{f'}(s,u) = d_{f'}(s,v) + 1$$
 (2)

- Using (1) and (2) we get: $d_{f'}(s,u) = d_{f'}(s,v) + 1 \ge d_f(s,v) + 1 = d_f(s,u) + 2$ • The last table is the las
- The shortest distance has increased by 2 between the instances when (u, v) becomes critical.

- <u>Claim 2</u>: The total number of flow augmentations in the Edmonds–Karp algorithm is O(nm).
- <u>Theorem</u>: The running time of Edmonds-Karp algorithm is $O(nm^2)$.

End