
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of 

Algorithms



Network Flow

Ford-Fulkerson algorithm



Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

Network Flow

 Running time: 𝑂(𝑚 ⋅ 𝐶)



Network Flow

s

u

v

t

16

4

13

20

4

p

q

7

12

14

9



Network Flow

s

u

v

t4

13

20

4

p

q

7

12

14

9

16



Network Flow

s

u

v

t4

6

13

4

p

q

0

12

7

9

7 7

7

7

16



Network Flow

s

u

v

t4

6

13

4

p

q

0

12

7

9

7 7

7

7

16



Network Flow

s

u

v

t4

2

13

0

p

q

0

12

3

9

11 11

7

7

4

16



Network Flow

s

u

v

t4

2

13

0

p

q

0

12

3

9

11 11

7

7

4

16



Network Flow

s

u

v

t

4

4

2

1

0

p

q

0

0

3

9

11 11

7

19

4

12
12



Network Flow

Ford-Fulkerson algorithm: Proof of correctness



Network Flow
 Theorem: Let 𝑓 be the flow returned by the Ford-Fulkerson 

algorithm. Then 𝑓 maximizes  𝑣 𝑓 =  𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠 𝑓(𝑒).

 Let 𝑆 be a subset of vertices and 𝑓 be a flow. Then

𝑓𝑖𝑛 𝑆 =  𝑒 𝑖𝑛𝑡𝑜 𝑆 𝑓(𝑒) and 𝑓𝑜𝑢𝑡 𝑆 =  𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑆 𝑓(𝑒)

 s-t cut: A partition of vertices (𝐴, 𝐵) is called an 𝑠 − 𝑡 cut if 

𝐴 contains 𝑠 and 𝐵 contains 𝑡.

 Capacity of s-t cut: The capacity of an 𝑠 − 𝑡 cut (𝐴, 𝐵) is 

defined as 𝐶 𝐴, 𝐵 =  𝑒 𝑜𝑢𝑡 𝑜𝑓 𝐴 𝑐(𝑒).



Network Flow

 Claim 1: For any 𝑠 − 𝑡 cut (𝐴, 𝐵) and any flow 𝑓, 

𝑣(𝑓) = 𝑓𝑜𝑢𝑡(𝐴) – 𝑓𝑖𝑛(𝐴)

 Theorem: Let 𝑓 be the flow returned by the Ford-Fulkerson 

algorithm. Then 𝑓 maximizes  𝑣 𝑓 =  𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠 𝑓(𝑒).
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Network Flow

 Claim 3: Let 𝑓 be a flow such that there is no 𝑠 − 𝑡 path in 

𝐺𝑓. Then there is an 𝑠 − 𝑡 cut (𝐴∗, 𝐵∗) such that 𝑣(𝑓) =
𝐶(𝐴∗, 𝐵∗). Furthermore, 𝑓 is a flow with maximum value 

and (𝐴∗, 𝐵∗) is the 𝑠 − 𝑡 cut with minimum capacity.
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Network Flow

 Claim 3: Let 𝑓 be a flow such that there is no 𝑠 − 𝑡 path in 

𝐺𝑓. Then there is an 𝑠 − 𝑡 cut (𝐴∗, 𝐵∗) such that 𝑣(𝑓) =
𝐶(𝐴∗, 𝐵∗). Furthermore, 𝑓 is a flow with maximum value 

and (𝐴∗, 𝐵∗) is the 𝑠 − 𝑡 cut with minimum capacity.

 Proof:

s t

𝐴∗ (all vertices reachable from 𝑠 in 𝐺𝑓)

0

 Theorem: Let 𝑓 be the flow returned by the Ford-Fulkerson 

algorithm. Then 𝑓 maximizes  𝑣 𝑓 =  𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠 𝑓(𝑒).

𝑣 𝑓 = 𝑓𝑜𝑢𝑡 𝐴∗ − 𝑓𝑖𝑛 𝐴∗

= 𝑓𝑜𝑢𝑡 𝐴∗ − 0
= 𝐶(𝐴∗, 𝐵∗)



Network Flow

 Theorem(Max-flow-min-cut): In every flow 

network, the maximum value of an 𝑠 − 𝑡 flow is 

equal to the minimum capacity of an 𝑠 − 𝑡 cut. 



Network Flow:

 Ford-Fulkerson algorithm:

 Given network with integer capacities, find a source-to-sink 

path and push as much flow along the path as possible. 

 Update the residual capacity of edges in the residual graph.

 Repeat.

 Proof of correctness: 

 The algorithm terminates.

 The capacities are integers. 

 What if the capacities are not integers? Does the algorithm terminate?

 Max-flow-min-cut theorem: In every network flow the 

maximum value of an 𝑠 − 𝑡 flow is equal to the minimum 

capacity of an 𝑠 − 𝑡 cut. 



Network Flow:
 A simple example where the Ford-Fulkerson algorithm does 

not terminate. 
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Network Flow:
 A simple example where the Ford-Fulkerson algorithm does 

not terminate. 
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Network Flow:
 A simple example where the Ford-Fulkerson algorithm does 

not terminate. 
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Network Flow:
 A simple example where the Ford-Fulkerson algorithm does 

not terminate. 

 Suppose inductively, the residual capacities of edges (𝑞, 𝑝), 
(𝑞, 𝑟), and (𝑠, 𝑟) are 𝑎𝑘−1, 0, 𝑎𝑘. Consider next four flows.
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Network Flow:
 A simple example where the Ford-Fulkerson algorithm does 

not terminate. 

 The total value of the flow converges to (1 + 2 𝑎𝑖) =

4 + √5.

 The max flow is 201.



Network Flow: running time





 The running time of the Ford-Fulkerson algorithm is 𝑂(𝑚 ⋅
𝐶).

 𝐶 could be very large compared to the size of the graph.

 Example:

Network Flow
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 The running time of the Ford-Fulkerson algorithm is 𝑂(𝑚 ⋅
𝐶).

 𝐶 could be very large compared to the size of the graph.
 Example: We might get a better running time if we could hide 

the edge with small capacity when looking for an augmenting 
path.

 General idea: Use all edges with large capacities before 
considering edges with smaller capacity. 

Network Flow
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 For an 𝑠 − 𝑡 flow 𝑓 and a positive integer ∆, let 𝐺𝑓(∆) denote a 

subset of the residual graph 𝐺𝑓 consisting only of edges with 

residual capacity of at least ∆.

 Idea: Instead of finding augmenting paths in 𝐺𝑓, we will find 

augmenting paths in 𝐺𝑓(∆) for smaller and smaller values of ∆.

Network Flow

Scaling-Max-Flow

- Start with an 𝑠 − 𝑡 flow such that for all 𝑒, 𝑓(𝑒) = 0

- ∆=largest power of 2 smaller than 𝐶

- while ∆ ≥ 1

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓(∆)

- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓(∆) to 𝐺𝑓’(∆)

- ∆ = ∆/2

-return 𝑓
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