CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal

CSE, IIT Delhi

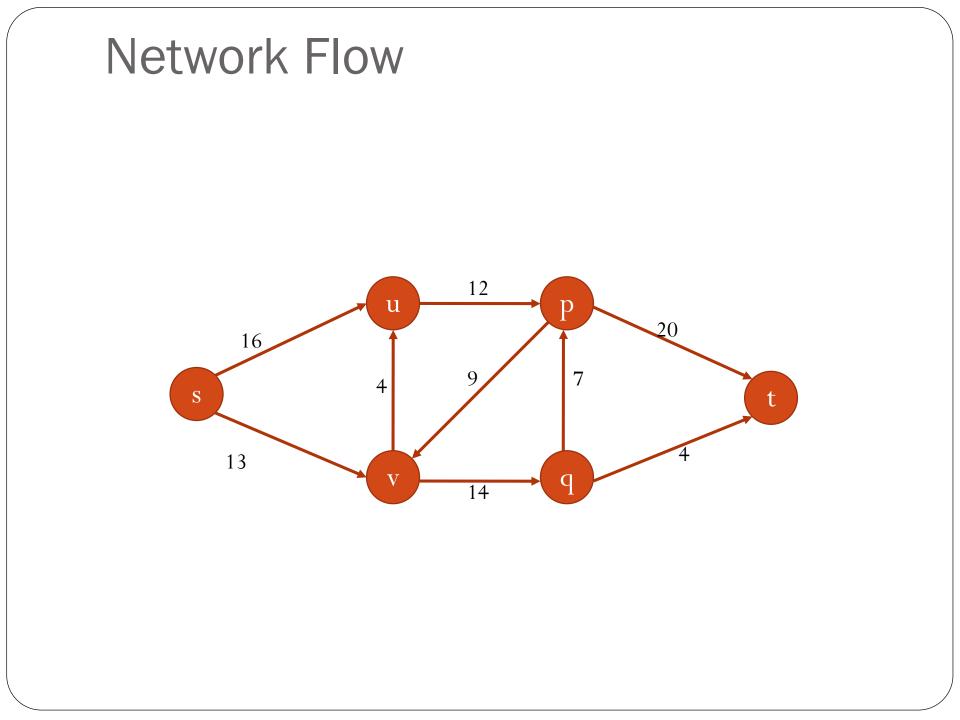
Ford-Fulkerson algorithm

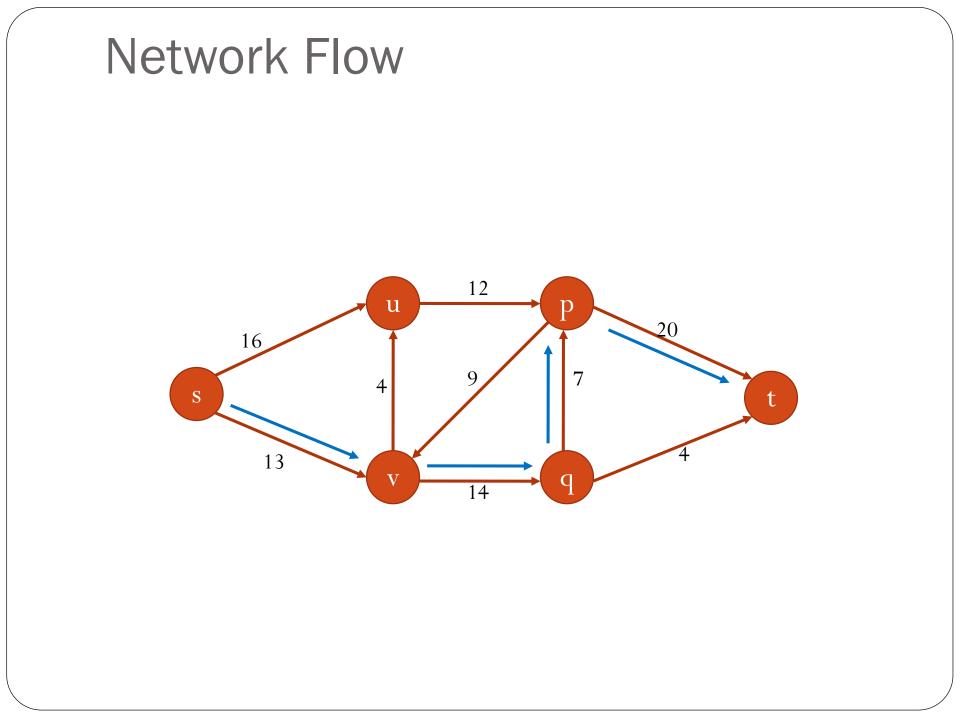
Max-Flow //Ford-Fulkerson algorithm

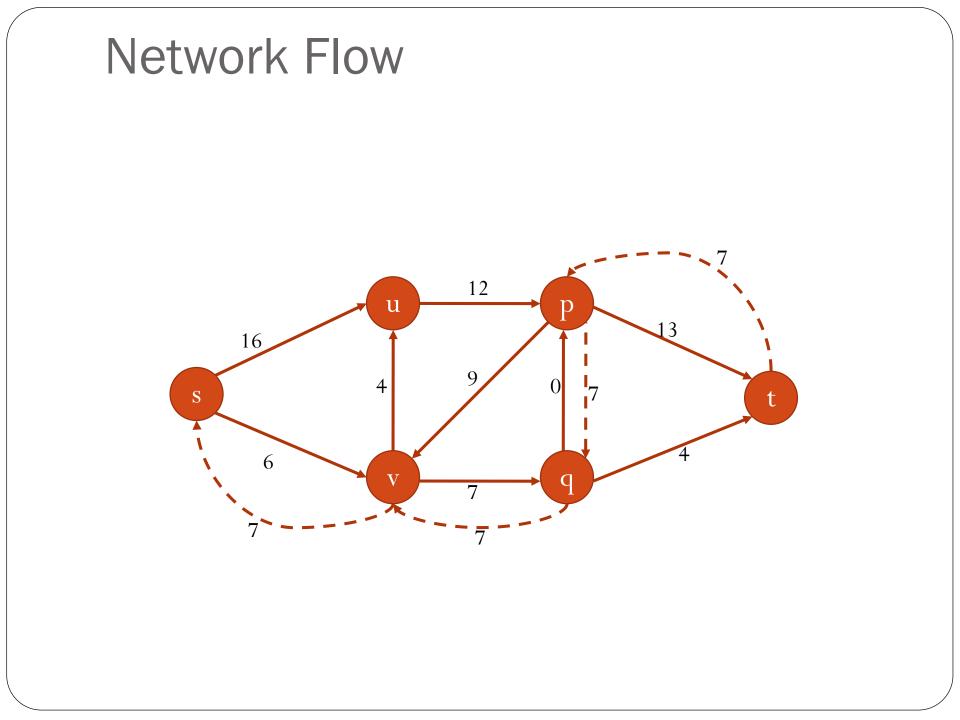
- Start with a flow f such that f(e) = 0
- while there is an s t path P in G_f
 - Execute the augmenting path algorithm to obtain f'
 - Update f to f' and G_f to $G_{f'}$

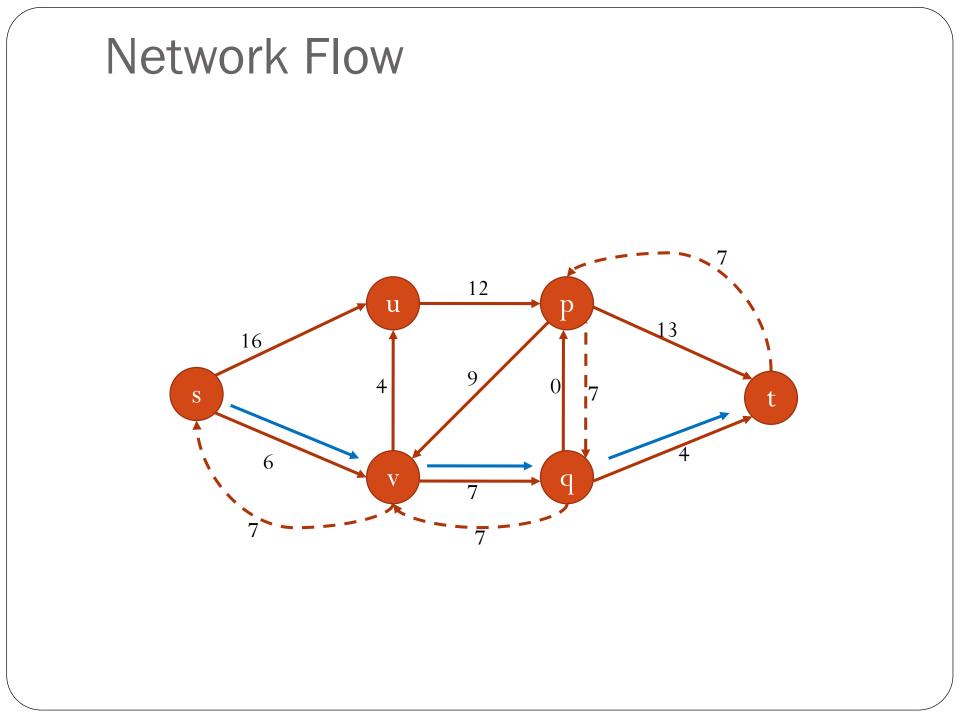
- return f

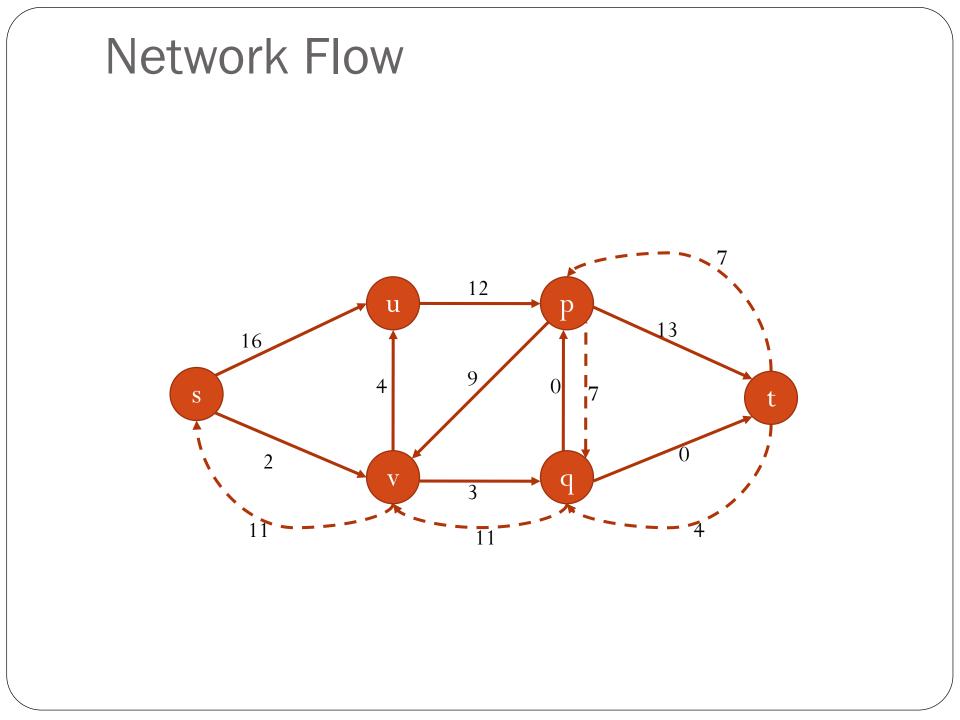
• <u>Running time</u>: $O(m \cdot C)$

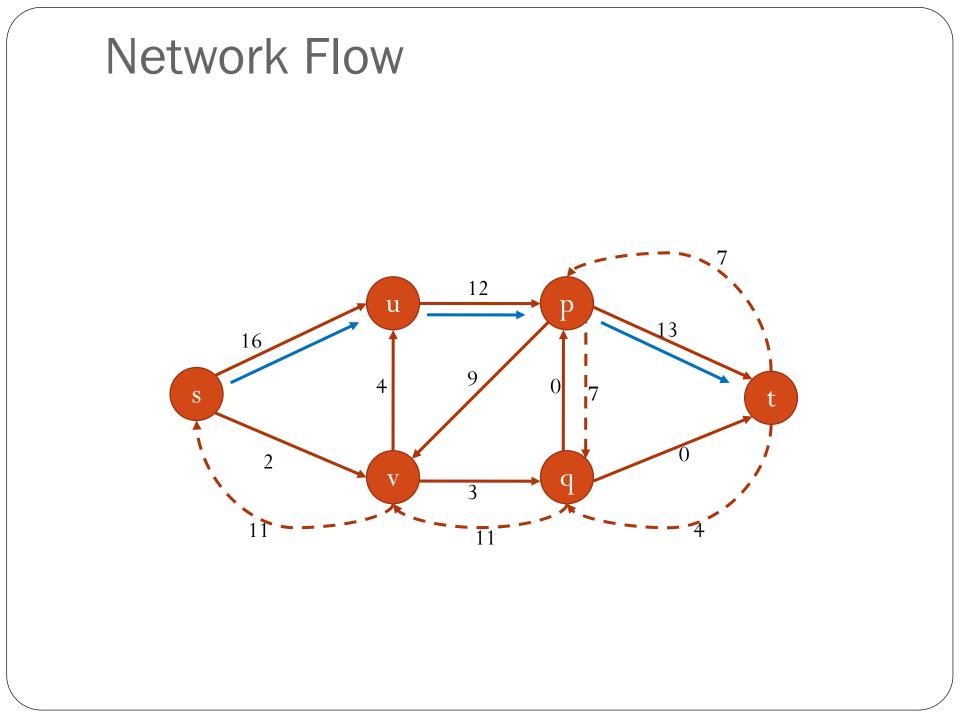


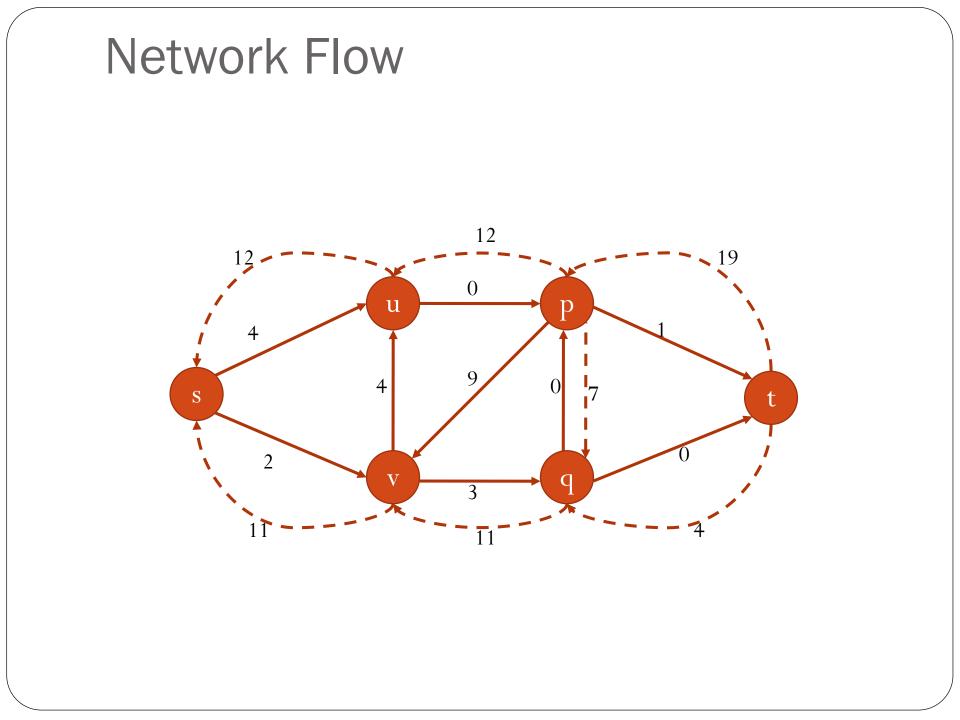












Ford-Fulkerson algorithm: Proof of correctness

- <u>Theorem</u>: Let f be the flow returned by the Ford-Fulkerson algorithm. Then f maximizes $v(f) = \sum_{e \text{ out of } s} f(e)$.
- Let S be a subset of vertices and f be a flow. Then $f^{in}(S) = \sum_{e \text{ into } S} f(e) \text{ and } f^{out}(S) = \sum_{e \text{ out of } S} f(e)$
- <u>s-t cut</u>: A partition of vertices (A, B) is called an s t cut if A contains s and B contains t.
- <u>Capacity of s-t cut</u>: The capacity of an s t cut (A, B) is defined as $C(A, B) = \sum_{e \text{ out of } A} c(e)$.

• Claim 1: For any
$$s - t$$
 cut (A, B) and any flow f ,
 $v(f) = f^{out}(A) - f^{in}(A)$

- <u>Claim 1</u>: For any s t cut (A, B) and any flow f, $v(f) = f^{out}(A) - f^{in}(A)$
- <u>Proof</u>: $v(f) = f^{out}(\{s\}) f^{in}(\{s\})$ and for all other nodes v in A we have $f^{out}(\{v\}) - f^{in}(\{v\}) = 0$. So,
 - $v(f) = \sum_{v \text{ in } A} (f^{out}(\{v\}) f^{in}(\{v\})) = f^{out}(A) f^{in}(A)$

- <u>Claim 1</u>: For any s t cut (A, B) and any flow f, $v(f) = f^{out}(A) - f^{in}(A)$
- Proof: v(f) = f^{out}({s}) fⁱⁿ({s}) and for all other nodes v in A we have f^{out}({v}) fⁱⁿ({v}) = 0. So,
 v(f) = Σ_{v in A}(f^{out}({v}) fⁱⁿ({v})) = f^{out}(A) fⁱⁿ(A)
- <u>Claim 2</u>: Let f be any s t flow and (A, B) be any s t cut. Then $v(f) \leq C(A, B)$.

- <u>Claim 1</u>: For any s t cut (A, B) and any flow f, $v(f) = f^{out}(A) - f^{in}(A)$
- <u>Proof</u>: $v(f) = f^{out}(\{s\}) f^{in}(\{s\})$ and for all other nodes vin A we have $f^{out}(\{v\}) - f^{in}(\{v\}) = 0$. So,
 - $v(f) = \sum_{v \text{ in } A} (f^{out}(\{v\}) f^{in}(\{v\})) = f^{out}(A) f^{in}(A)$
- <u>Claim 2</u>: Let f be any s t flow and (A, B) be any s t cut. Then $v(f) \leq C(A, B)$.
- <u>Proof</u>: $v(f) = f^{out}(A) f^{in}(A) \leq f^{out}(A) \leq C(A, B).$

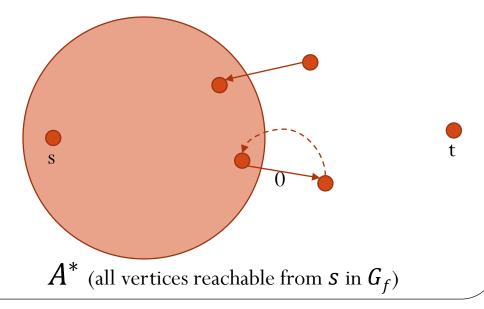
- <u>Theorem</u>: Let f be the flow returned by the Ford-Fulkerson algorithm. Then f maximizes $v(f) = \sum_{e \text{ out of } s} f(e)$.
- <u>Claim 3</u>: Let f be a flow such that there is no s t path in G_f . Then there is an s t cut (A^*, B^*) such that $v(f) = C(A^*, B^*)$. Furthermore, f is a flow with maximum value and (A^*, B^*) is the s t cut with minimum capacity.

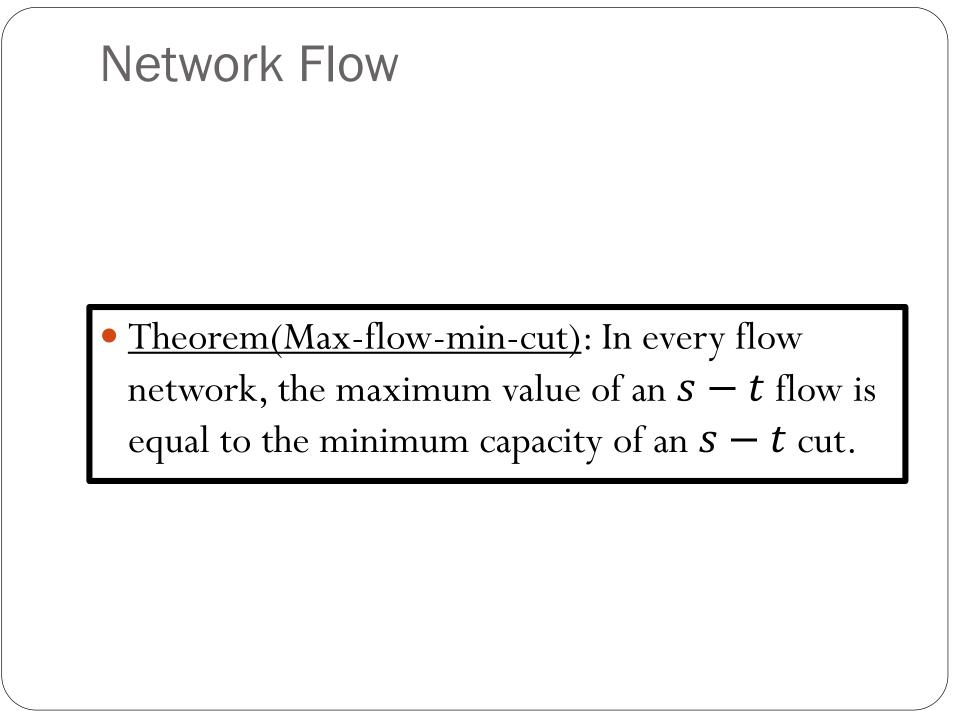
- <u>Theorem</u>: Let f be the flow returned by the Ford-Fulkerson algorithm. Then f maximizes $v(f) = \sum_{e \text{ out of } s} f(e)$.
- <u>Claim 3</u>: Let f be a flow such that there is no S t path in G_f . Then there is an S t cut (A^*, B^*) such that $v(f) = C(A^*, B^*)$. Furthermore, f is a flow with maximum value and (A^*, B^*) is the S t cut with minimum capacity.

• <u>Proof</u>:

$$v(f) = f^{out}(A^*) - f^{in}(A^*)$$

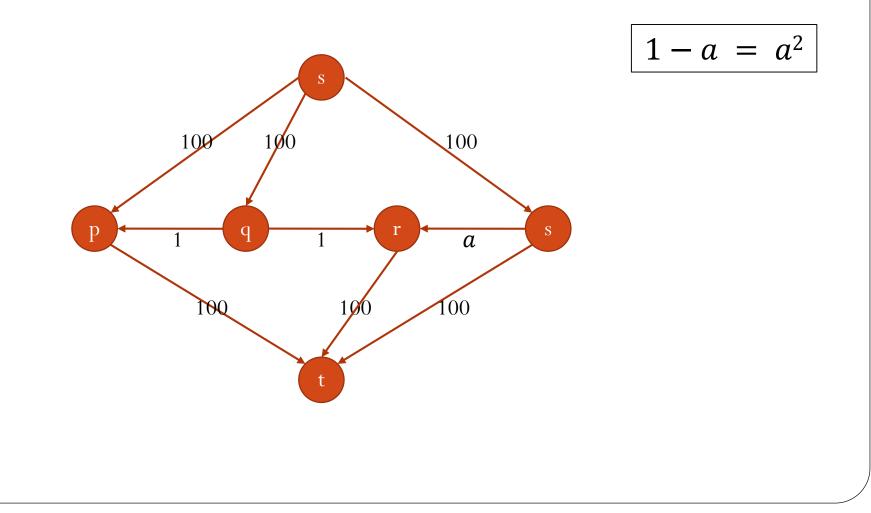
= $f^{out}(A^*) - 0$
= $C(A^*, B^*)$



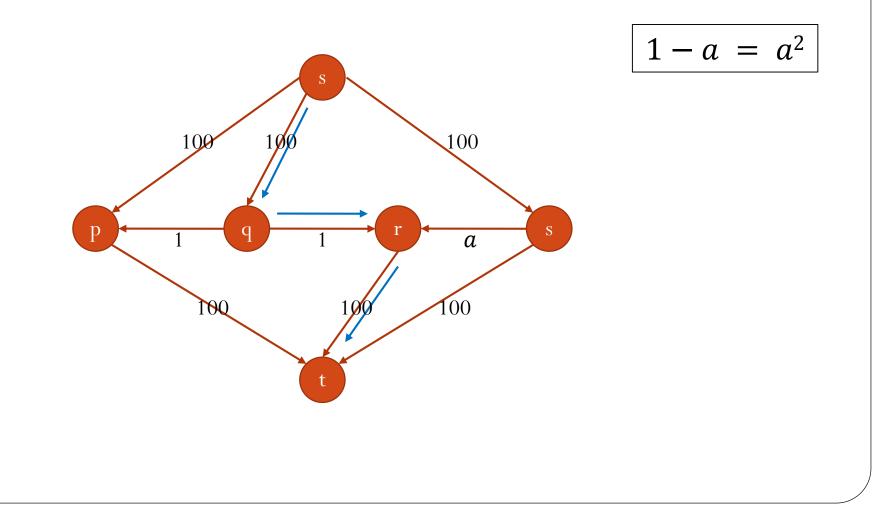


- Ford-Fulkerson algorithm:
 - Given network with integer capacities, find a source-to-sink path and push as much flow along the path as possible.
 - Update the residual capacity of edges in the residual graph.
 - Repeat.
- Proof of correctness:
 - The algorithm terminates.
 - The capacities are integers.
 - What if the capacities are not integers? Does the algorithm terminate?
 - <u>Max-flow-min-cut theorem</u>: In every network flow the maximum value of an S t flow is equal to the minimum capacity of an S t cut.

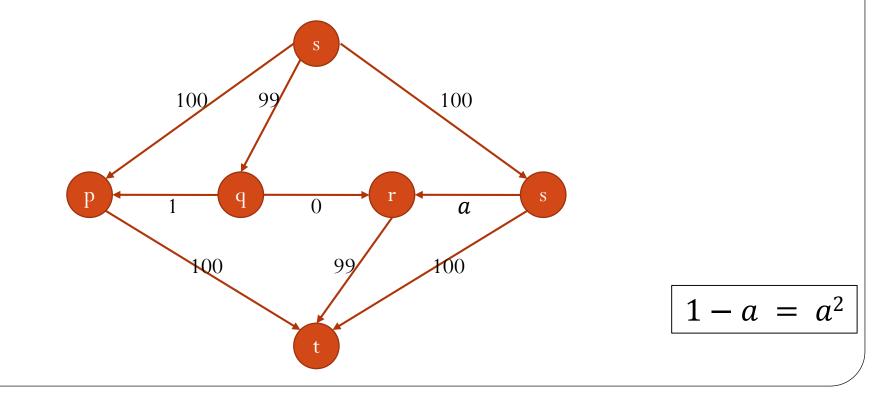
• A simple example where the Ford-Fulkerson algorithm does not terminate.



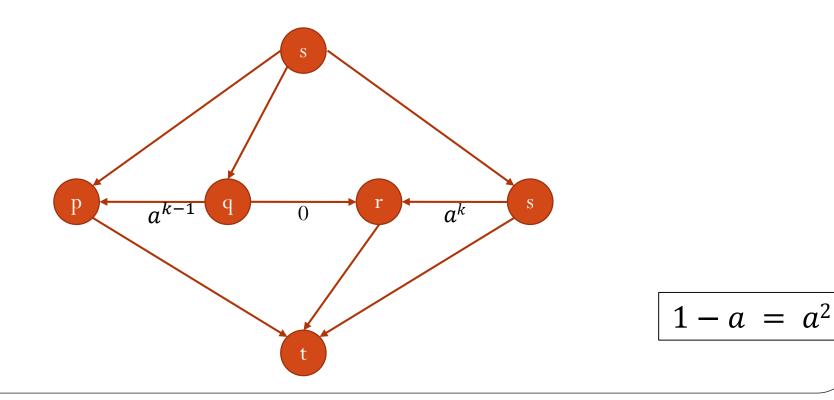
• A simple example where the Ford-Fulkerson algorithm does not terminate.



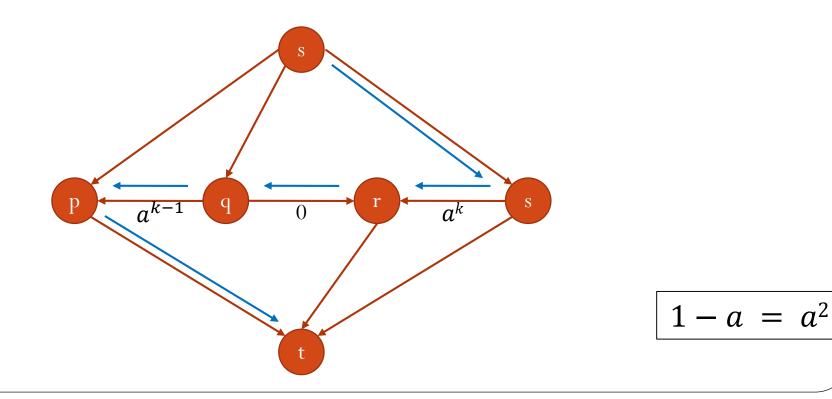
• A simple example where the Ford-Fulkerson algorithm does not terminate.



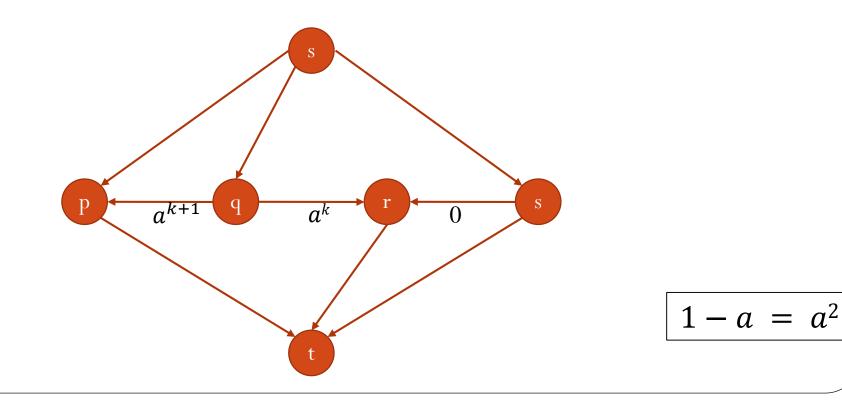
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



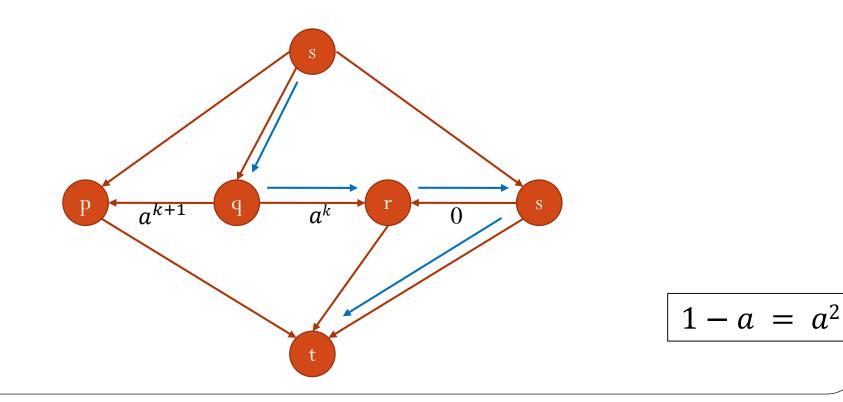
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



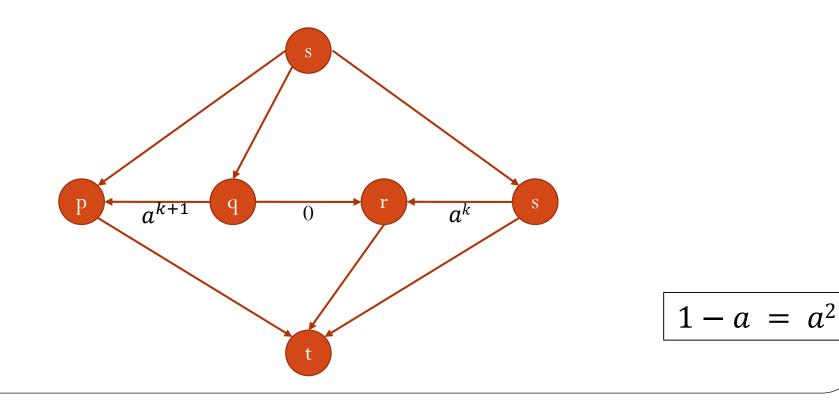
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



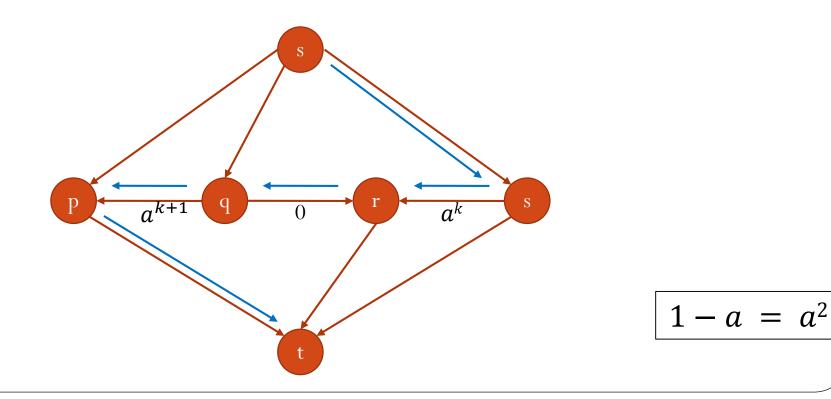
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



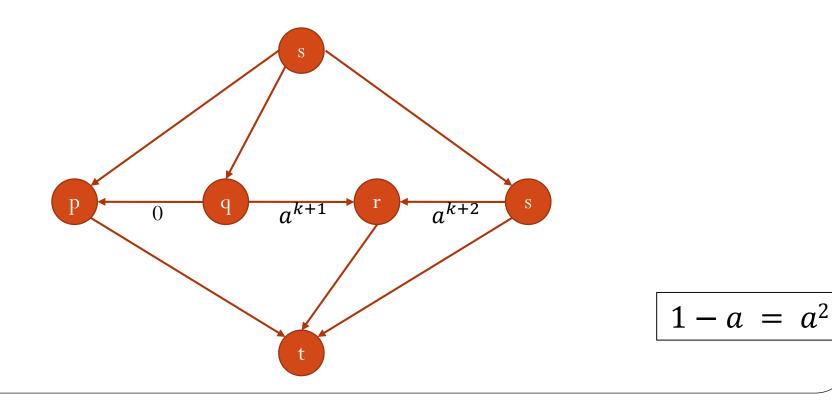
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



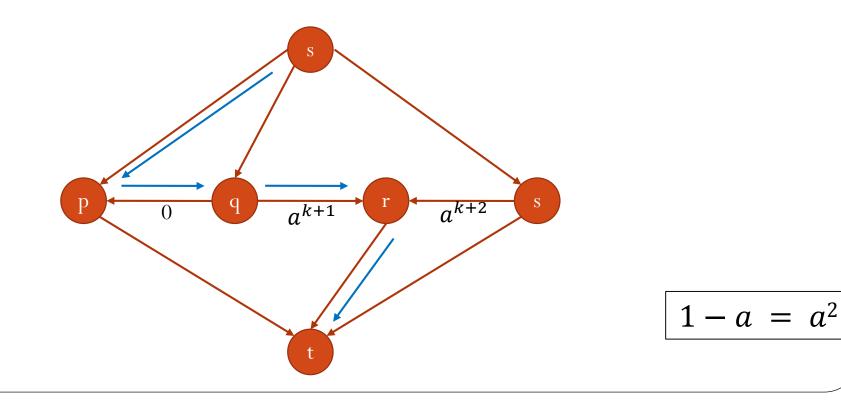
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



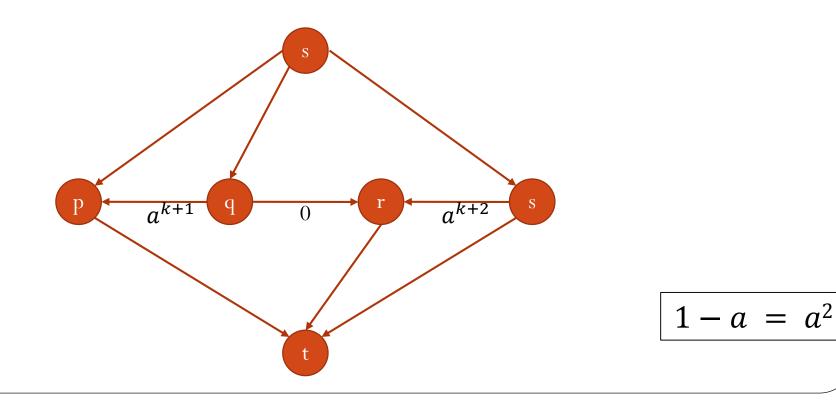
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



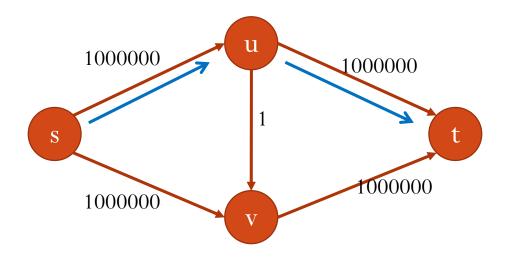
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- Suppose inductively, the residual capacities of edges (q, p), (q, r), and (s, r) are a^{k-1} , 0, a^k . Consider next four flows.



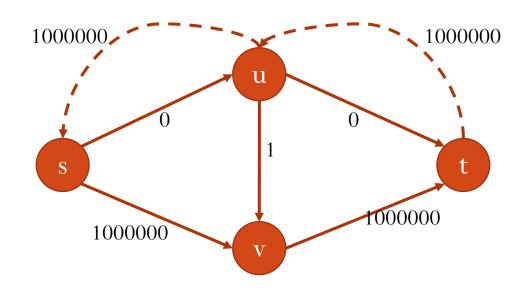
- A simple example where the Ford-Fulkerson algorithm does not terminate.
- The total value of the flow converges to $(1 + 2\sum a^i) = 4 + \sqrt{5}$.
- The max flow is **201**.

Network Flow: running time

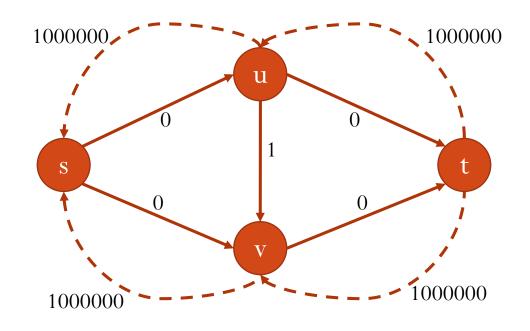
- $C = \sum_{e \text{ out of } s} c(e)$
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph.
 - Example:



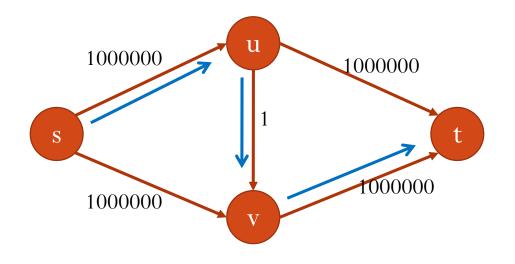
- $C = \sum_{e \text{ out of } s} c(e)$
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph.
 - Example:



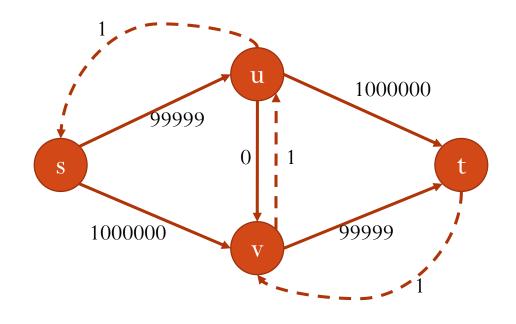
- $C = \sum_{e \text{ out of } s} c(e)$
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph.
 - Example:



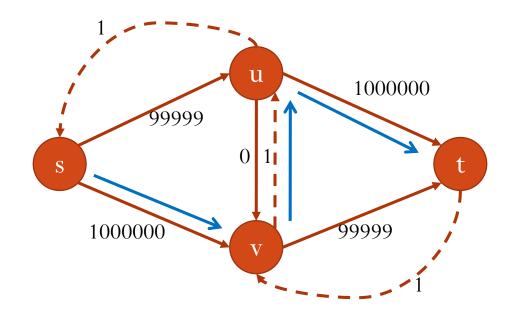
- $C = \sum_{e \text{ out of } s} c(e)$
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph.
 - Example:



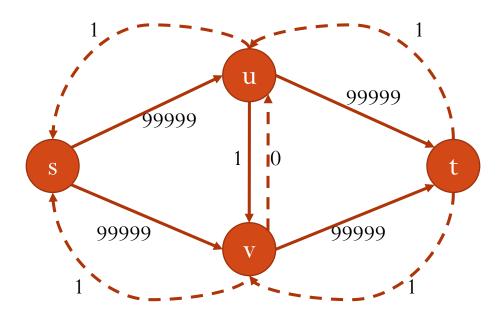
- $C = \sum_{e \text{ out of } s} c(e)$
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph.
 - Example:



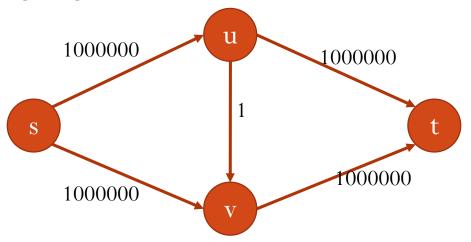
- $C = \sum_{e \text{ out of } s} c(e)$
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph.
 - Example:



- $C = \sum_{e \text{ out of } s} c(e)$
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph.
 - Example:



- $C = \sum_{e \text{ out of } s} c(e)$
- The running time of the Ford-Fulkerson algorithm is $O(m \cdot C)$.
- *C* could be very large compared to the size of the graph.
 - Example: We might get a better running time if we could hide the edge with small capacity when looking for an augmenting path.
- <u>General idea</u>: Use all edges with large capacities before considering edges with smaller capacity.



- For an s t flow f and a positive integer Δ , let $G_f(\Delta)$ denote a subset of the residual graph G_f consisting only of edges with residual capacity of at least Δ .
- <u>Idea</u>: Instead of finding augmenting paths in G_f , we will find augmenting paths in $G_f(\Delta)$ for smaller and smaller values of Δ .

Scaling-Max-Flow

- Start with an s t flow such that for all e, f(e) = 0
- Δ =largest power of 2 smaller than C
- while $\Delta \geq 1$
 - while there is an s t path P in $G_f(\Delta)$
 - Execute the augmenting path algorithm to obtain f^\prime
 - Update f to f' and $G_f(\Delta)$ to $G_{f'}(\Delta)$

 $-\Delta = \Delta/2$

-return f

End