
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Techniques

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational Intractability

Topics

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational intractability

 Other topics: Randomized algorithms, computational
geometry, Number-theoretic algorithms etc.

Network Flow
 We want to model various kinds of networks using graphs

and then solve real world problems w.r.t. these networks by

studying the underlying graph.

 One problem that arises in network design is routing “flows”

within the network.

 Transportation network: Vertices are cities and edges denote

highways. Every highway has certain traffic capacity. We are

interested in knowing the maximum amount commodity that

can be shipped from a source city to a destination city.

 Computer network: edges are links and vertices are switches.

Each link has some capacity of carrying packets. Again, we are

interested in knowing how much traffic can a source node send

to a destination node.

Network Flow
 To model these problems, we consider weighted, directed

graph 𝐺 = (𝑉, 𝐸) with the following properties:

 Capacity: Associated with each edge 𝑒 is a capacity that is a non-

negative integer denoted by 𝑐(𝑒).

 Source node: There is a source node 𝑠 with no incoming edges.

 Sink node: There is a sink node 𝑡 with no outgoing edges.

All other nodes in the graph are called internal nodes.

 Given such a graph an “s-t flow” in the graph is a function 𝑓
that maps the edges to non-negative real numbers such that

the following properties are satisfied:

 Capacity constraint: For all edges 𝑒, 0 ≤ 𝑓(𝑒) ≤ 𝑐(𝑒).

 Flow conservation: For every internal node 𝑣,
 𝑒 𝑖𝑛𝑡𝑜 𝑣 𝑓 𝑒 = 𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑣 𝑓(𝑒).

Network Flow
 Problem (maximum flow): Find a s-t flow 𝑓 such that the

following quantity is maximized:

𝑣 𝑓 =

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)

s

u

v

t

20

10

30

10

20

Network Flow

s

u

v

t

20

10

30

10

20

20
20

20

Routing 20 units of flow from s to t.

Is it possible to “push more flow”?

 Problem (maximum flow): Find a s-t flow 𝑓 such that the
following quantity is maximized:

𝑣 𝑓 =

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)

Network Flow

s

u

v

t

20

10

30

10

20

20
20

20

We should reset the initial flow (𝑢, 𝑣) to 10

10

 Problem (maximum flow): Find a s-t flow 𝑓 such that the
following quantity is maximized:

𝑣 𝑓 =

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)

Network Flow

s

u

v

t

20

10

30

10

20

20
10

20

We should reset the initial flow (𝑢, 𝑣) to 10

Maximum flow from 𝑠 = 30

10

10

 Problem (maximum flow): Find a s-t flow 𝑓 such that the
following quantity is maximized:

𝑣 𝑓 =

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)

Network Flow
 Approach:

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push

some flow along this path and update the flow to 𝑓’.

s

u

v

t

20

10

30

10

20

20
20

20

Network Flow

s

u

v

t

0

10

10

10

0

20

20

20

𝑓(𝑠, 𝑢) = 20,
𝑓(𝑠, 𝑣) = 0
𝑓(𝑢, 𝑣) = 20,
𝑓(𝑢, 𝑡) = 0,
𝑓(𝑣, 𝑡) = 20

𝐺𝑓

 Approach:

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push

some flow along this path and update the flow to 𝑓’.

Network Flow

s

u

v

t

0

10

10

10

0

20

20

20

10
10

10

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

 Approach:

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push

some flow along this path and update the flow to 𝑓’.

Network Flow

s

u

v

t

0

0

20

0

0

20

10

20

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

𝐺𝑓’10

10

 Approach:

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push

some flow along this path and update the flow to 𝑓’.

Network Flow
 Residual Graph 𝐺𝑓:

 Forward edges: For every edge 𝑒 in the original graph, there are
(𝑐(𝑒) − 𝑓(𝑒)) units of more flow we can send along that
edge. So we set the weight of this edge to (𝑐(𝑒) − 𝑓(𝑒)).

 Backward edges: For every edge 𝑒 = (𝑢, 𝑣) in the original graph,
there are 𝑓(𝑒) units of flow that we can undo. So we add a
reverse edge 𝑒’ = (𝑣, 𝑢) and set the weight of 𝑒’ to 𝑓(𝑒).

s

u

v

t

0

10

10

10

0

20

20

20

𝑓(𝑠, 𝑢) = 20,
𝑓(𝑠, 𝑣) = 0
𝑓(𝑢, 𝑣) = 20,
𝑓(𝑢, 𝑡) = 0,
𝑓(𝑣, 𝑡) = 20

𝐺𝑓

Network Flow
 Augmenting paths in 𝐺𝑓:

 Let 𝑃 be a simple s-t path in 𝐺𝑓. Note that this contains forward and
backward edges.

 Let 𝑒𝑚𝑖𝑛 be an edge in the path 𝑃 of minimum weight 𝑤𝑚𝑖𝑛.

 For every forward edge 𝑒 in path 𝑃, set 𝑓’(𝑒) = 𝑓(𝑒) + 𝑤𝑚𝑖𝑛
 For every backward edge (𝑢, 𝑣) in 𝑃, set

𝑓’ 𝑣, 𝑢 = 𝑓(𝑣, 𝑢) − 𝑤𝑚𝑖𝑛

s

u

v

t

0

10

10

10

0

20

20

20

𝑓(𝑠, 𝑢) = 20,
𝑓(𝑠, 𝑣) = 0
𝑓(𝑢, 𝑣) = 20,
𝑓(𝑢, 𝑡) = 0,
𝑓(𝑣, 𝑡) = 20

𝐺𝑓

Network Flow

s

u

v

t

0

10

10

10

0

20

20

20

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

𝐺𝑓

 Augmenting paths in 𝐺𝑓:
 Let 𝑃 be a simple s-t path in 𝐺𝑓. Note that this contains forward and

backward edges.

 Let 𝑒𝑚𝑖𝑛 be an edge in the path 𝑃 of minimum weight 𝑤𝑚𝑖𝑛.

 For every forward edge 𝑒 in path 𝑃, set 𝑓’(𝑒) = 𝑓(𝑒) + 𝑤𝑚𝑖𝑛
 For every backward edge (𝑢, 𝑣) in 𝑃, set

𝑓’ 𝑣, 𝑢 = 𝑓(𝑣, 𝑢) − 𝑤𝑚𝑖𝑛

Network Flow
 Claim: 𝑓’ is an 𝑠 − 𝑡 flow.

 Proof:

 Check capacity constraint for each edge.

 Check flow conservation at each vertex.

s

u

v

t

0

10

10

10

0

20

20

20

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

𝐺𝑓

Network Flow
Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

 Running time:

Network Flow

 Running time:

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).

Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

Network Flow

 Running time:

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).

 Claim 2: The while loop runs for iterations.
sofoute

ecC)(

Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

Network Flow

 Running time: 𝑂(𝑚 ⋅ 𝐶)

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).

 Claim 2: The while loop runs for iterations.

 Claim 3: Augmenting a path takes 𝑂(𝑚) time


sofoute

ecC)(

Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

Network Flow

s

u

v

t

16

4

13

20

4

p

q

7

12

14

9

Network Flow

s

u

v

t4

13

20

4

p

q

7

12

14

9

16

Network Flow

s

u

v

t4

6

13

4

p

q

0

12

7

9

7 7

7

7

16

Network Flow

s

u

v

t4

6

13

4

p

q

0

12

7

9

7 7

7

7

16

Network Flow

s

u

v

t4

2

13

0

p

q

0

12

3

9

11 11

7

7

4

16

Network Flow

s

u

v

t4

2

13

0

p

q

0

12

3

9

11 11

7

7

4

16

Network Flow

s

u

v

t

4

4

2

1

0

p

q

0

0

3

9

11 11

7

19

4

12
12

End

Problems to think about:

1. Consider the Ford-Fulkerson algorithm. Given an 𝑠 − 𝑡 flow 𝑓,
the algorithm picks an arbitrary 𝑠 − 𝑡 path and pushes more

flow along that path. Suppose we change the algorithm slightly

and instead of picking an arbitrary 𝑠 − 𝑡 path, pick a path with

shortest hop-length (do a BFS and pick a shortest path). Can you

construct an example where this algorithm will perform much

better than the Ford-Fulkerson algorithm.

