
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Techniques

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational Intractability

Topics

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational intractability

 Other topics: Randomized algorithms, computational
geometry, Number-theoretic algorithms etc.

Network Flow
 We want to model various kinds of networks using graphs

and then solve real world problems w.r.t. these networks by

studying the underlying graph.

 One problem that arises in network design is routing “flows”

within the network.

 Transportation network: Vertices are cities and edges denote

highways. Every highway has certain traffic capacity. We are

interested in knowing the maximum amount commodity that

can be shipped from a source city to a destination city.

 Computer network: edges are links and vertices are switches.

Each link has some capacity of carrying packets. Again, we are

interested in knowing how much traffic can a source node send

to a destination node.

Network Flow
 To model these problems, we consider weighted, directed

graph 𝐺 = (𝑉, 𝐸) with the following properties:

 Capacity: Associated with each edge 𝑒 is a capacity that is a non-

negative integer denoted by 𝑐(𝑒).

 Source node: There is a source node 𝑠 with no incoming edges.

 Sink node: There is a sink node 𝑡 with no outgoing edges.

All other nodes in the graph are called internal nodes.

 Given such a graph an “s-t flow” in the graph is a function 𝑓
that maps the edges to non-negative real numbers such that

the following properties are satisfied:

 Capacity constraint: For all edges 𝑒, 0 ≤ 𝑓(𝑒) ≤ 𝑐(𝑒).

 Flow conservation: For every internal node 𝑣,
 𝑒 𝑖𝑛𝑡𝑜 𝑣 𝑓 𝑒 = 𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑣 𝑓(𝑒).

Network Flow
 Problem (maximum flow): Find a s-t flow 𝑓 such that the

following quantity is maximized:

𝑣 𝑓 =

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)

s

u

v

t

20

10

30

10

20

Network Flow

s

u

v

t

20

10

30

10

20

20
20

20

Routing 20 units of flow from s to t.

Is it possible to “push more flow”?

 Problem (maximum flow): Find a s-t flow 𝑓 such that the
following quantity is maximized:

𝑣 𝑓 =

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)

Network Flow

s

u

v

t

20

10

30

10

20

20
20

20

We should reset the initial flow (𝑢, 𝑣) to 10

10

 Problem (maximum flow): Find a s-t flow 𝑓 such that the
following quantity is maximized:

𝑣 𝑓 =

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)

Network Flow

s

u

v

t

20

10

30

10

20

20
10

20

We should reset the initial flow (𝑢, 𝑣) to 10

Maximum flow from 𝑠 = 30

10

10

 Problem (maximum flow): Find a s-t flow 𝑓 such that the
following quantity is maximized:

𝑣 𝑓 =

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)

Network Flow
 Approach:

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push

some flow along this path and update the flow to 𝑓’.

s

u

v

t

20

10

30

10

20

20
20

20

Network Flow

s

u

v

t

0

10

10

10

0

20

20

20

𝑓(𝑠, 𝑢) = 20,
𝑓(𝑠, 𝑣) = 0
𝑓(𝑢, 𝑣) = 20,
𝑓(𝑢, 𝑡) = 0,
𝑓(𝑣, 𝑡) = 20

𝐺𝑓

 Approach:

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push

some flow along this path and update the flow to 𝑓’.

Network Flow

s

u

v

t

0

10

10

10

0

20

20

20

10
10

10

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

 Approach:

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push

some flow along this path and update the flow to 𝑓’.

Network Flow

s

u

v

t

0

0

20

0

0

20

10

20

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

𝐺𝑓’10

10

 Approach:

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push

some flow along this path and update the flow to 𝑓’.

Network Flow
 Residual Graph 𝐺𝑓:

 Forward edges: For every edge 𝑒 in the original graph, there are
(𝑐(𝑒) − 𝑓(𝑒)) units of more flow we can send along that
edge. So we set the weight of this edge to (𝑐(𝑒) − 𝑓(𝑒)).

 Backward edges: For every edge 𝑒 = (𝑢, 𝑣) in the original graph,
there are 𝑓(𝑒) units of flow that we can undo. So we add a
reverse edge 𝑒’ = (𝑣, 𝑢) and set the weight of 𝑒’ to 𝑓(𝑒).

s

u

v

t

0

10

10

10

0

20

20

20

𝑓(𝑠, 𝑢) = 20,
𝑓(𝑠, 𝑣) = 0
𝑓(𝑢, 𝑣) = 20,
𝑓(𝑢, 𝑡) = 0,
𝑓(𝑣, 𝑡) = 20

𝐺𝑓

Network Flow
 Augmenting paths in 𝐺𝑓:

 Let 𝑃 be a simple s-t path in 𝐺𝑓. Note that this contains forward and
backward edges.

 Let 𝑒𝑚𝑖𝑛 be an edge in the path 𝑃 of minimum weight 𝑤𝑚𝑖𝑛.

 For every forward edge 𝑒 in path 𝑃, set 𝑓’(𝑒) = 𝑓(𝑒) + 𝑤𝑚𝑖𝑛
 For every backward edge (𝑢, 𝑣) in 𝑃, set

𝑓’ 𝑣, 𝑢 = 𝑓(𝑣, 𝑢) − 𝑤𝑚𝑖𝑛

s

u

v

t

0

10

10

10

0

20

20

20

𝑓(𝑠, 𝑢) = 20,
𝑓(𝑠, 𝑣) = 0
𝑓(𝑢, 𝑣) = 20,
𝑓(𝑢, 𝑡) = 0,
𝑓(𝑣, 𝑡) = 20

𝐺𝑓

Network Flow

s

u

v

t

0

10

10

10

0

20

20

20

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

𝐺𝑓

 Augmenting paths in 𝐺𝑓:
 Let 𝑃 be a simple s-t path in 𝐺𝑓. Note that this contains forward and

backward edges.

 Let 𝑒𝑚𝑖𝑛 be an edge in the path 𝑃 of minimum weight 𝑤𝑚𝑖𝑛.

 For every forward edge 𝑒 in path 𝑃, set 𝑓’(𝑒) = 𝑓(𝑒) + 𝑤𝑚𝑖𝑛
 For every backward edge (𝑢, 𝑣) in 𝑃, set

𝑓’ 𝑣, 𝑢 = 𝑓(𝑣, 𝑢) − 𝑤𝑚𝑖𝑛

Network Flow
 Claim: 𝑓’ is an 𝑠 − 𝑡 flow.

 Proof:

 Check capacity constraint for each edge.

 Check flow conservation at each vertex.

s

u

v

t

0

10

10

10

0

20

20

20

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

𝐺𝑓

Network Flow
Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

 Running time:

Network Flow

 Running time:

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).

Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

Network Flow

 Running time:

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).

 Claim 2: The while loop runs for iterations.
sofoute

ecC)(

Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

Network Flow

 Running time: 𝑂(𝑚 ⋅ 𝐶)

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).

 Claim 2: The while loop runs for iterations.

 Claim 3: Augmenting a path takes 𝑂(𝑚) time

sofoute

ecC)(

Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

Network Flow

s

u

v

t

16

4

13

20

4

p

q

7

12

14

9

Network Flow

s

u

v

t4

13

20

4

p

q

7

12

14

9

16

Network Flow

s

u

v

t4

6

13

4

p

q

0

12

7

9

7 7

7

7

16

Network Flow

s

u

v

t4

6

13

4

p

q

0

12

7

9

7 7

7

7

16

Network Flow

s

u

v

t4

2

13

0

p

q

0

12

3

9

11 11

7

7

4

16

Network Flow

s

u

v

t4

2

13

0

p

q

0

12

3

9

11 11

7

7

4

16

Network Flow

s

u

v

t

4

4

2

1

0

p

q

0

0

3

9

11 11

7

19

4

12
12

End

Problems to think about:

1. Consider the Ford-Fulkerson algorithm. Given an 𝑠 − 𝑡 flow 𝑓,
the algorithm picks an arbitrary 𝑠 − 𝑡 path and pushes more

flow along that path. Suppose we change the algorithm slightly

and instead of picking an arbitrary 𝑠 − 𝑡 path, pick a path with

shortest hop-length (do a BFS and pick a shortest path). Can you

construct an example where this algorithm will perform much

better than the Ford-Fulkerson algorithm.

