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Techniques

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational Intractability



Topics

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flow

 Computational intractability

 Other topics: Randomized algorithms, computational 
geometry, Number-theoretic algorithms etc.



Network Flow
 We want to model various kinds of networks using graphs 

and then solve real world problems w.r.t. these networks by 

studying the underlying graph.

 One problem that arises in network design is routing “flows” 

within the network. 

 Transportation network: Vertices are cities and edges denote 

highways. Every highway has certain traffic capacity. We are 

interested in knowing the maximum amount commodity that 

can be shipped from a source city to a destination city.

 Computer network: edges are links and vertices are switches. 

Each link has some capacity of carrying packets. Again, we are 

interested in knowing how much traffic can a source node send 

to a destination node.



Network Flow
 To model these problems, we consider weighted, directed 

graph 𝐺 = (𝑉, 𝐸) with the following properties:

 Capacity: Associated with each edge 𝑒 is a capacity that is a non-

negative integer denoted by 𝑐(𝑒).

 Source node: There is a source node 𝑠 with no incoming edges.

 Sink node: There is a sink node 𝑡 with no outgoing edges. 

All other nodes in the graph are called internal nodes.

 Given such a graph an “s-t flow” in the graph is a function 𝑓
that maps the edges to non-negative real numbers such that 

the following properties are satisfied:

 Capacity constraint: For all edges 𝑒, 0 ≤ 𝑓(𝑒) ≤ 𝑐(𝑒).

 Flow conservation: For every internal node 𝑣, 
 𝑒 𝑖𝑛𝑡𝑜 𝑣 𝑓 𝑒 =  𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑣 𝑓(𝑒).



Network Flow
 Problem (maximum flow): Find a s-t flow 𝑓 such that the 

following quantity is maximized:

𝑣 𝑓 =  

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)
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 Problem (maximum flow): Find a s-t flow 𝑓 such that the 
following quantity is maximized:
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 Problem (maximum flow): Find a s-t flow 𝑓 such that the 
following quantity is maximized:

𝑣 𝑓 =  

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠
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 Problem (maximum flow): Find a s-t flow 𝑓 such that the 
following quantity is maximized:

𝑣 𝑓 =  

𝑒 𝑜𝑢𝑡 𝑜𝑓 𝑠

𝑓(𝑒)



Network Flow
 Approach: 

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that 

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push 

some flow along this path and update the flow to 𝑓’.
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 Approach: 
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some flow along this path and update the flow to 𝑓’.



Network Flow

s

u

v

t

0

10

10

10

0

20

20

20

10
10

10

𝑓’(𝑠, 𝑢) = 20,
𝑓’(𝑠, 𝑣) = 10
𝑓’(𝑢, 𝑣) = 10,
𝑓’(𝑢, 𝑡) = 10,
𝑓’(𝑣, 𝑡) = 20

 Approach: 

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that 

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push 
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 Approach: 

 We will build iteratively build larger 𝑠 − 𝑡 flows.

 Given an 𝑠 − 𝑡 flow 𝑓, we will build a residual graph 𝐺𝑓 that 

will allow us to reset flows along some of the edges.

 We will find an augmenting path in the residual graph 𝐺𝑓, push 

some flow along this path and update the flow to 𝑓’.



Network Flow
 Residual Graph 𝐺𝑓:

 Forward edges: For every edge 𝑒 in the original graph, there are 
(𝑐(𝑒) − 𝑓(𝑒)) units of more flow we can send along that 
edge. So we set the weight of this edge to (𝑐(𝑒) − 𝑓(𝑒)).

 Backward edges: For every edge 𝑒 = (𝑢, 𝑣) in the original graph, 
there are 𝑓(𝑒) units of flow that we can undo. So we add a 
reverse edge 𝑒’ = (𝑣, 𝑢) and set the weight of 𝑒’ to 𝑓(𝑒).
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Network Flow
 Augmenting paths in 𝐺𝑓: 

 Let 𝑃 be a simple s-t path in 𝐺𝑓. Note that this contains forward and 
backward edges. 

 Let 𝑒𝑚𝑖𝑛 be an edge in the path 𝑃 of minimum weight 𝑤𝑚𝑖𝑛.

 For every forward edge 𝑒 in path 𝑃, set 𝑓’(𝑒) = 𝑓(𝑒) + 𝑤𝑚𝑖𝑛
 For every backward edge (𝑢, 𝑣) in 𝑃, set 

𝑓’ 𝑣, 𝑢 = 𝑓(𝑣, 𝑢) − 𝑤𝑚𝑖𝑛
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 Augmenting paths in 𝐺𝑓: 
 Let 𝑃 be a simple s-t path in 𝐺𝑓. Note that this contains forward and 

backward edges. 

 Let 𝑒𝑚𝑖𝑛 be an edge in the path 𝑃 of minimum weight 𝑤𝑚𝑖𝑛.

 For every forward edge 𝑒 in path 𝑃, set 𝑓’(𝑒) = 𝑓(𝑒) + 𝑤𝑚𝑖𝑛
 For every backward edge (𝑢, 𝑣) in 𝑃, set 

𝑓’ 𝑣, 𝑢 = 𝑓(𝑣, 𝑢) − 𝑤𝑚𝑖𝑛



Network Flow
 Claim: 𝑓’ is an 𝑠 − 𝑡 flow. 

 Proof: 

 Check capacity constraint for each edge.

 Check flow conservation at each vertex.
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Network Flow
Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓

 Running time:



Network Flow

 Running time:

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).
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- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓



Network Flow

 Running time:

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).

 Claim 2: The while loop runs for                 iterations.
sofoute

ecC )(
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- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓



Network Flow

 Running time: 𝑂(𝑚 ⋅ 𝐶)

 Claim 1: 𝑣(𝑓’) > 𝑣(𝑓).

 Claim 2: The while loop runs for                 iterations.

 Claim 3: Augmenting a path takes 𝑂(𝑚) time 


sofoute

ecC )(

Max-Flow //Ford-Fulkerson algorithm

- Start with a flow 𝑓 such that 𝑓(𝑒) = 0

- while there is an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓
- Execute the augmenting path algorithm to obtain 𝑓’

- Update 𝑓 to 𝑓’ and 𝐺𝑓 to 𝐺𝑓’
- return 𝑓
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End

Problems to think about: 

1. Consider the Ford-Fulkerson algorithm. Given an 𝑠 − 𝑡 flow 𝑓, 
the algorithm picks an arbitrary 𝑠 − 𝑡 path and pushes more 

flow along that path. Suppose we change the algorithm slightly 

and instead of picking an arbitrary 𝑠 − 𝑡 path, pick a path with 

shortest hop-length (do a BFS and pick a shortest path). Can you 

construct an example where this algorithm will perform  much 

better than the Ford-Fulkerson algorithm.


