CSL356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Dynamic Programming: Examples

- Problem[travelling salesperson (TSP)]: There are n cities and all the inter-city distances are given. Let $d(i, j)$ denote the distance between cities i and j.You are a salesperson and would like to visit each of the n cities starting and ending at your home-city. Give a tour that minimizes the total distance you have to travel.
- Example:

Dynamic Programming: Examples

- Suppose your home-city is city 1.
- How many different tours are possible?
- $(n-1)$!
- Let S be a subset of cities containing city 1 and city j.
- Let $T(S, j)$ denote the shortest path between cities 1 and j such that all cities in S are visited once on this path.
- The first city in the path above is 1 and last city is j. Check all possibilities for second-to-last city.
- $T(S, j)=\min _{i \in S, i \neq j}(T(S-\{j\}, i)+d(i, j))$.

Dynamic Programming: Examples

- Suppose your home-city is city 1.
- How many different tours are possible?
- $(n-1)$!
- Let S be a subset of cities containing city 1 and city j.
- Let $T(S, j)$ denote the shortest path between cities 1 and j such that all cities in S are visited once on this path.
- The first city in the path above is 1 and last city is j. Check all possibilities for second-tolast city.
- $T(S, j)=\min _{i \in S, i \neq j}(T(S-\{j\}, i)+d(i, j))$.

Dynamic Programming: Examples

TSP-Length
$-T(\{1\}, 1)=0$

- for $s=2$ to n
- for all subsets S of $\{1, \ldots, n\}$ of size S and containing 1

$$
-T(S, 1)=\infty
$$

- for all j in $S, j \neq 1$

$$
-T(S, j)=\min \{T(S-\{j\}, i)+d(i, j), i \in S, i \neq j\}
$$

- return $\min _{j}(T(\{1, \ldots, n\}, j)+d(1, j))$
- Running time:
- $O\left(n^{2} \cdot 2^{n}\right)$.

Dynamic Programming: Examples

TSP-Length (S, i)

- if $(|S|=1)$ return (0)
- if $(|S| \neq 1$ and $i=1)$ return (∞)
$-\operatorname{return}\left(\min _{j \in S, j \neq i}(T S P-\operatorname{Length}(S-\{i\}, j))\right)$
- Running time:
- $O((n-1)!)$.

Dynamic Programming: Examples

TSP-Length (S, i)

$$
\begin{aligned}
& \text { - if }(|S|=1) \text { return }(0) \\
& - \text { if }(|S| \neq 1 \text { and } i=1) \text { return }(\infty) \\
& -\operatorname{return}\left(\min _{j \in S, j \neq i}(T S P-\text { Length }(S-\{i\}, j))\right)
\end{aligned}
$$

Dynamic Programming: Some more examples

Viterbi's Algorithm

Dynamic Programming: Examples

- Problem:You are given a weighted, directed graph G. each directed edge is labeled with a symbol. Each edge (i, j) denotes the transition probability from i to j. So, sum of weights of out-going edges is 1 . Given a string of n symbols, find the most probable path in G starting at a vertex v.

Dynamic Programming: Examples

- Problem:You are given a weighted, directed graph G. each directed edge is labeled with a symbol. Each edge (i, j) denotes the transition probability from i to j. So, sum of weights of out-going edges is 1 . Given a string of n symbols, find the most probable path in G starting at a vertex v.

Dynamic Programming: Examples

- Problem: You are given a weighted, directed graph G. each directed edge is labeled with a symbol. Each edge (i, j) denotes the transition probability from i to j. So, sum of weights of out-going edges is 1 . Given a string of n symbols, find the most probable path in G starting at a vertex v.
- Let us consider the negation of log of edge weights instead of edge weights. Call this graph G^{\prime}.
- Now we need to minimize the sum of edge weights in the path rather than maximize the product of edge weights.
- $M(i, w)$: The cost of the minimum weighted path with labels S_{i}, \ldots, S_{n} starting at vertex W.

Dynamic Programming: Examples

- Problem:You are given a weighted, directed graph G. each directed edge is labeled with a symbol. Each edge (i, j) denotes the transition probability from i to j. So, sum of weights of out-going edges is 1 . Given a string of n symbols, find the most probable path in G starting at a vertex v.
- $M(i, w)$:The cost of the minimum weighted path with labels S_{i}, \ldots, S_{n} starting at vertex W.
- $M(i, w)=\min _{u \text { s.t.label of }(w, u) \text { is } s_{i}}\{M(i+1, u)+e(w, u)\}$
- Running Time:

Dynamic Programming: Examples

- Problem:You are given a weighted, directed graph G. each directed edge is labeled with a symbol. Each edge (i, j) denotes the transition probability from i to j. So, sum of weights of out-going edges is 1 . Given a string of n symbols, find the most probable path in G starting at a vertex v.
- $M(i, w)$:The cost of the minimum weighted path with labels S_{i}, \ldots, S_{n} starting at vertex W.
- $M(i, w)=\min _{u \text { s.t.label of }(w, u) i s}\{M(i+1, u)+e(w, u)\}$
- Running Time:
- $O(n \cdot|E|)$

Dynamic Programming: Examples

- Problem:You are given a weighted, directed graph G. each directed edge is labeled with a symbol. Each edge (i, j) denotes the transition probability from i to j. So, sum of weights of out-going edges is 1 . Given a string of n symbols, find the most probable path in G starting at a vertex v.
- $M(i, w)$:The cost of the minimum weighted path with labels S_{i}, \ldots, S_{n} starting at vertex W.
- $M(i, w)=\min _{u \text { s.t.label of }(w, u) i s}\{M(i+1, u)+e(w, u)\}$
- Running Time:
- $O(n \cdot|E|)$
- Space:
- $O(|E|)$ in case we are only interested in the probability.

End

