CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal

CSE, IIT Delhi

All pairs shortest paths

Matrix Chain Multiplication

- <u>Problem(matrix chain multiplication)</u>: You are given a sequence of n matrices M₁, ..., M_n of size (m₁ × m₂), (m₂ × m₃), ..., (m_n × m_{n+1}). Determine in what order these matrices should be multiplied (using naïve method) so as to reduce the total running time.
- <u>Example</u>: Consider four matrices of size
 - $M_1: 50 \times 20$
 - *M*₂: 20 × 1
 - $M_3: 1 \times 10$
 - $M_4: 10 \times 100$
- $M_1 \times M_2 \times M_3 \times M_4 = M_1 \times ((M_2 \times M_3) \times M_4)$ • Time:
- $M_1 \times M_2 \times M_3 \times M_4 = (M_1 \times (M_2 \times M_3)) \times M_4$ • Time:
- *M*₁ × *M*₂ × *M*₃ × *M*₄ = (*M*₁ × *M*₂) × (*M*₃ × *M*₄)
 Time:

- <u>Problem(matrix chain multiplication)</u>: You are given a sequence of n matrices M_1, \ldots, M_n of size $(m_1 \times m_2), (m_2 \times m_3), \ldots, (m_n \times m_{n+1})$. Determine in what order these matrices should be multiplied (using naïve method) so as to reduce the total running time.
- <u>Example</u>: Consider four matrices of size
 - $M_1: 50 \times 20$
 - *M*₂: 20 × 1
 - $M_3: 1 \times 10$
 - $M_4: 10 \times 100$
- $M_1 \times M_2 \times M_3 \times M_4 = M_1 \times ((M_2 \times M_3) \times M_4)$ • Time: $20 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$
- $M_1 \times M_2 \times M_3 \times M_4 = (M_1 \times (M_2 \times M_3)) \times M_4$ • Time: $20 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$
- $M_1 \times M_2 \times M_3 \times M_4 = (M_1 \times M_2) \times (M_3 \times M_4)$
 - Time: $50 \cdot 20 + 10 \cdot 100 + 50 \cdot 100$

- C(i, j): Minimum cost of multiplying matrices M_i, \dots, M_j .
- C(i,i) = 0
- C(i,j)?

- C(i, j): Minimum cost of multiplying matrices M_i, ..., M_j.
 C(i, i) = 0
- C(i,i) = 0
- $C(i,j) = \min_{i \le k < j} (C(i,k) + C(k+1,j) + m_i \cdot m_{k+1} \cdot m_{j+1})$

Matrix-Cost
$$(M_1, ..., M_n)$$

- for $i = 1$ to n
- $C[i, i] = 0$
- for $s = 1$ to $n - 1$
- for $i = 1$ to $n - s$
- $j = i + s$
- $C[i, j] = \min_{i \le k < j} (C[i, k] + C[k + 1, j] + m_i \cdot m_{k+1} \cdot m_{j+1})$
- return $(C[1, n])$

• Running time:

- C(i, j): Minimum cost of multiplying matrices M_i, ..., M_j.
 C(i, i) = 0
- C(i,i) = 0• $C(i,j) = \min_{i \le k < i} (C(i,k) + C(k+1,j) + m_i \cdot m_{k+1} \cdot m_{j+1})$

Matrix-Cost
$$(M_1, ..., M_n)$$

- for $i = 1$ to n
- $C[i, i] = 0$
- for $s = 1$ to $n - 1$
- for $i = 1$ to $n - s$
- $j = i + s$
- $C[i, j] = \min_{i \le k < j} (C[i, k] + C[k + 1, j] + m_i \cdot m_{k+1} \cdot m_{j+1})$
- return $(C[1, n])$

• Running time: $O(n^3)$.

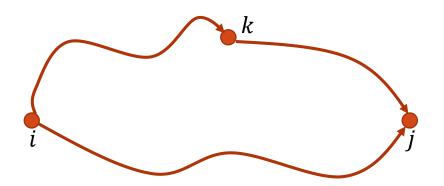
- <u>Problem (all pairs shortest path)</u>: Let G = (V, E) be a weighted graph that has no negative cycles. Give an algorithm to find the shortest path between all pairs of vertices.
- Suppose the edge weights are positive.
 - Use Dijkstra's algorithm for all source vertices to find all pairs shortest paths.
 - Running time:

- <u>Problem (all pairs shortest path)</u>: Let G = (V, E) be a weighted graph that has no negative cycles. Give an algorithm to find the shortest path between all pairs of vertices.
- Suppose the edge weights are positive.
 - Use Dijkstra's algorithm for all source vertices to find all pairs shortest paths.
 - Running time: $O(mn \log n)$
- Edge weights could be negative.
 - There is an algorithm called *Bellman-Ford* that computes single source shortest paths in time O(nm). We will get an $O(n^2m)$ algorithm using this.

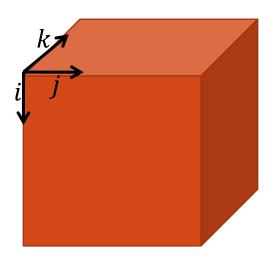
- Dynamic programming solution: *Floyd-Warshall*
 - Label the vertices in the graph $\{1, 2, ..., n\}$
 - L(i, j, k): The shortest path length between vertices i and j such that all intermediate vertices have labels {1, ..., k}.

- Dynamic programming solution: *Floyd-Warshall*
 - Label the vertices in the graph $\{1, 2, ..., n\}$
 - L(i, j, k): The shortest path length between vertices i and j such that all intermediate vertices have labels {1, ..., k}.
 - L(i, j, 0) = e(i, j) if there is an edge between i and j else ∞ (a very large number).
 - What is the value of L(i, j, k) for k > 0?

- Dynamic programming solution: *Floyd-Warshall*
 - Label the vertices in the graph $\{1, 2, ..., n\}$
 - L(i, j, k): The shortest path length between vertices i and j such that all intermediate vertices have labels {1, ..., k}.
 - L(i, j, 0) = e(i, j) if there is an edge between i and j else ∞ (a very large number).
 - What is the value of L(i, j, k) for k > 0?
 - L(i,j,k) = min(L(i,j,k-1),L(i,k,k-1) + L(k,j,k-1))



- Dynamic programming solution: *Floyd-Warshall*
 - L(i, j, 0) = e(i, j) if there is an edge between i and j else ∞ (a very large number).
 - What is the value of L(i, j, k) for k > 0?
 - L(i, j, k) = min(L(i, j, k 1), L(i, k, k 1) + L(k, j, k 1))
 - How do we fill the 3-D matrix **L**?



- Dynamic programming solution: *Floyd-Warshall*
 - L(i, j, 0) = e(i, j) if there is an edge between i and j else ∞ (a very large number).
 - What is the value of L(i, j, k) for k > 0?
 - L(i, j, k) = min(L(i, j, k 1), L(i, k, k 1) + L(k, j, k 1))
 - How do we fill the 3-D matrix *L*?
 - Compute L(i, j, k) before computing L(i, j, k + 1).
 - How do we compute the shortest paths?

- Dynamic programming solution: *Floyd-Warshall*
 - L(i, j, 0) = e(i, j) if there is an edge between i and j else ∞ (a very large number).
 - What is the value of L(i, j, k) for k > 0?
 - L(i, j, k) = min(L(i, j, k 1), L(i, k, k 1) + L(k, j, k 1))
 - How do we fill the 3-D matrix *L*?
 - Compute L(i, j, k) before computing L(i, j, k + 1).
 - How do we compute the shortest paths?
 - Can we keep storing the predecessor of *j* in the shortest path with intermediate vertices {1, ..., *k*}?

- Dynamic programming solution: *Floyd-Warshall*
 - L(i, j, 0) = e(i, j) if there is an edge between i and j else ∞ (a very large number).
 - What is the value of L(i, j, k) for k > 0?
 - L(i,j,k) = min(L(i,j,k-1),L(i,k,k-1) + L(k,j,k-1))
 - How do we fill the 3-D matrix *L*?
 - Compute L(i, j, k) before computing L(i, j, k + 1).
 - How do we compute the shortest paths?
 - Can we keep storing the predecessor of *j* in the shortest path with intermediate vertices {1, ..., *k*}?
 - P(i, j, k) = either P(k, j, k 1) or P(i, j, k 1)

- Dynamic programming solution: *Floyd-Warshall*
 - L(i, j, 0) = e(i, j) if there is an edge between i and j else ∞ (a very large number).
 - What is the value of L(i, j, k) for k > 0?
 - L(i, j, k) = min(L(i, j, k 1), L(i, k, k 1) + L(k, j, k 1))
 - How do we fill the 3-D matrix *L*?
 - Compute L(i, j, k) before computing L(i, j, k + 1).
 - How do we compute the shortest paths?
 - Can we keep storing the predecessor of *j* in the shortest path with intermediate vertices {1, ..., *k*}?
 - P(i, j, k) = either P(k, j, k 1) or P(i, j, k 1)
 - What is the running time?

- Dynamic programming solution: *Floyd-Warshall*
 - L(i, j, 0) = e(i, j) if there is an edge between i and j else ∞ (a very large number).
 - What is the value of L(i, j, k) for k > 0?
 - L(i, j, k) = min(L(i, j, k 1), L(i, k, k 1) + L(k, j, k 1))
 - How do we fill the 3-D matrix *L*?
 - Compute L(i, j, k) before computing L(i, j, k + 1).
 - How do we compute the shortest paths?
 - Can we keep storing the predecessor of *j* in the shortest path with intermediate vertices {1, ..., *k*}?
 - P(i, j, k) = either P(k, j, k 1) or P(i, j, k 1)
 - What is the running time?
 - *O*(*n*³)

End