
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Dynamic Programming: Examples

Longest Common Subsequence

 Problem(longest common subsequence): Let 𝑆 and 𝑇 be strings of
characters. 𝑆 is of length 𝑛 and 𝑇 is of length 𝑚. Find the longest
common subsequence. This is the longest sequence of characters that
appear in both 𝑆 and 𝑇. The characters are not necessarily
contiguous.

 Example: 𝑆 = XYXZPQ, 𝑇 = YXQYXP.
 The longest common subsequence is XYXP

 𝑆=XYXZPQ, 𝑇= YXQYXP

Dynamic Programming: Examples

 Let 𝐿(𝑖, 𝑗) denote the length of the longest common

subsequence in the strings (𝑆[1]…𝑆[𝑖]) and (𝑇[1]…𝑇[𝑗])

 What is 𝐿(1, 𝑗) for 1 < 𝑗 ≤ 𝑚?

 Problem(longest common subsequence): Let 𝑆 and 𝑇 be strings of
characters. 𝑆 is of length 𝑛 and 𝑇 is of length 𝑚. Find the longest
common subsequence. This is the longest sequence of characters that
appear in both 𝑆 and 𝑇. The characters are not necessarily
contiguous.

 Example: 𝑆 = XYXZPQ, 𝑇 = YXQYXP.
 The longest common subsequence is XYXP

 𝑆=XYXZPQ, 𝑇= YXQYXP

Dynamic Programming: Examples

 Let 𝐿(𝑖, 𝑗) denote the length of the longest common

subsequence in the strings (𝑆[1]…𝑆[𝑖]) and (𝑇[1]…𝑇[𝑗])

 What is 𝐿(1, 𝑗) for 1 < 𝑗 ≤ 𝑚?

 1 if 𝑆[1] is present in the string (𝑇[1]…𝑇[𝑗]).

 Problem(longest common subsequence): Let 𝑆 and 𝑇 be strings of
characters. 𝑆 is of length 𝑛 and 𝑇 is of length 𝑚. Find the longest
common subsequence. This is the longest sequence of characters that
appear in both 𝑆 and 𝑇. The characters are not necessarily
contiguous.

 Example: 𝑆 = XYXZPQ, 𝑇 = YXQYXP.
 The longest common subsequence is XYXP

 𝑆=XYXZPQ, 𝑇= YXQYXP

Dynamic Programming: Examples

 Let 𝐿(𝑖, 𝑗) denote the length of the longest common

subsequence in the strings (𝑆[1]…𝑆[𝑖]) and (𝑇[1]…𝑇[𝑗])

 What is 𝐿(1, 𝑗) for 1 < 𝑗 ≤ 𝑚?

 1 if 𝑆[1] is present in the string (𝑇[1]…𝑇[𝑗]).

 1 if 𝑆[1] = 𝑇[𝑗] else 𝐿(1, 𝑗) = 𝐿(1, 𝑗 − 1).

Dynamic Programming: Examples

 Let 𝐿(𝑖, 𝑗) denote the length of the longest common

subsequence in the strings (𝑆[1]…𝑆[𝑖]) and (𝑇[1]…𝑇[𝑗])

 What is 𝐿(1, 𝑗) for 1 < 𝑗 ≤ 𝑚?

 1 if 𝑆[1] is present in the string (𝑇[1]…𝑇[𝑗]).

 1 if 𝑆[1] = 𝑇[𝑗] else 𝐿(1, 𝑗) = 𝐿(1, 𝑗 − 1).

 Similarly, we can define 𝐿(𝑖, 1).

 Can you say something similar for 𝐿(𝑖, 𝑗) for 𝑖, 𝑗 ≠ 1?

Dynamic Programming: Examples

 Let 𝐿(𝑖, 𝑗) denote the length of the longest common

subsequence in the strings (𝑆[1]…𝑆[𝑖]) and (𝑇[1]…𝑇[𝑗])

 What is 𝐿(1, 𝑗) for 1 < 𝑗 ≤ 𝑚?

 1 if 𝑆[1] is present in the string (𝑇[1]…𝑇[𝑗]).

 1 if 𝑆[1] = 𝑇[𝑗] else 𝐿(1, 𝑗) = 𝐿(1, 𝑗 − 1).

 Similarly, we can define 𝐿(𝑖, 1).

 Can you say something similar for 𝐿(𝑖, 𝑗) for 𝑖, 𝑗 ≠ 1?

 Claim 1: If 𝑆[𝑖] = 𝑇[𝑗], then 𝐿(𝑖, 𝑗) = 1 + 𝐿(𝑖 − 1, 𝑗 − 1).

Dynamic Programming: Examples

 Let 𝐿(𝑖, 𝑗) denote the length of the longest common

subsequence in the strings (𝑆[1]…𝑆[𝑖]) and (𝑇[1]…𝑇[𝑗])

 What is 𝐿(1, 𝑗) for 1 < 𝑗 ≤ 𝑚?

 1 if 𝑆[1] is present in the string (𝑇[1]…𝑇[𝑗]).

 1 if 𝑆[1] = 𝑇[𝑗] else 𝐿(1, 𝑗) = 𝐿(1, 𝑗 − 1).

 Similarly, we can define 𝐿(𝑖, 1).

 Can you say something similar for 𝐿(𝑖, 𝑗) for 𝑖, 𝑗 ≠ 1?

 Claim 1: If 𝑆[𝑖] = 𝑇[𝑗], then 𝐿(𝑖, 𝑗) = 1 + 𝐿(𝑖 − 1, 𝑗 − 1).

 Claim 2: If 𝑆[𝑖] ≠ 𝑇[𝑗], then

𝐿(𝑖, 𝑗) = max(𝐿(𝑖 − 1, 𝑗), 𝐿(𝑖, 𝑗 − 1)).

Dynamic Programming: Examples
 What is 𝐿(1, 𝑗) for 1 < 𝑗 ≤ 𝑚?

 1 if 𝑆[1] is present in the string (𝑇[1]…𝑇[𝑗]).

 1 if 𝑆[1] = 𝑇[𝑗] else 𝐿(1, 𝑗) = 𝐿(1, 𝑗 − 1).

 Can you say something similar for 𝐿(𝑖, 𝑗) for 𝑖, 𝑗 ≠ 1?

 Claim 1: If 𝑆[𝑖] = 𝑇[𝑗], then 𝐿(𝑖, 𝑗) = 1 + 𝐿(𝑖 − 1, 𝑗 − 1).

 Claim 2: If 𝑆[𝑖] ≠ 𝑇[𝑗], then 𝐿(𝑖, 𝑗) = max(𝐿(𝑖 − 1, 𝑗), 𝐿(𝑖, 𝑗 − 1)).

𝑖

𝑗𝐿

•The black arrows show dependencies

between sub-problems.

Dynamic Programming: Examples

Length-LCS(𝑆, 𝑇)

- if (𝑆[1] = 𝑇[1])then 𝐿[1,1] = 1 else 𝐿[1,1] = 0

- for 𝑗 = 2 to 𝑚

- If (𝑆[1] = 𝑇[𝑗]) then 𝐿[1, 𝑗] = 1 else 𝐿[1, 𝑗] = 𝐿[1, 𝑗 − 1]

- for 𝑖 = 2 to 𝑛

- If (𝑆[𝑖] = 𝑇[1]) then 𝐿[𝑖, 1] = 1 else 𝐿[𝑖, 1] = 𝐿[𝑖 − 1,1]

- for 𝑖 = 2 to 𝑛

- for 𝑗 = 2 to 𝑚

- if (𝑆[𝑖] = 𝑇[𝑗]) then 𝐿[𝑖, 𝑗] = 1 + 𝐿[𝑖 − 1, 𝑗 − 1]

else 𝐿[𝑖, 𝑗] = max(𝐿[𝑖 − 1, 𝑗], 𝐿[𝑖, 𝑗 − 1])

Dynamic Programming: Examples

 How do we find the longest common subsequence?

𝑖

𝑗𝐿

𝑖

𝑗𝑃

•Array 𝑃 is used to maintain the pointers

to the appropriate sub-problem.

•The blue squares give the position of the

characters in a longest common subsequence.

•The black arrows show dependencies

between sub-problems.

Dynamic Programming: Examples

 Example: 𝑆= XYXZPQ, 𝑇=YXQYXP

𝐿 𝑃
0 1 1 1 1 1

1

1

1

1

1

Dynamic Programming: Examples

 Example: 𝑆= XYXZPQ, 𝑇=YXQYXP

𝐿 𝑃
0 1 1 1 1 1

1 1

1

1

1

1

Dynamic Programming: Examples

 Example: 𝑆= XYXZPQ, 𝑇=YXQYXP

𝐿 𝑃
0 1 1 1 1 1

1 1 1

1

1

1

1

Dynamic Programming: Examples

 Example: 𝑆= XYXZPQ, 𝑇=YXQYXP

𝐿 𝑃
0 1 1 1 1 1

1 1 1 2

1

1

1

1

Dynamic Programming: Examples

 Example: 𝑆= XYXZPQ, 𝑇=YXQYXP

𝐿 𝑃
0 1 1 1 1 1

1 1 1 2 2 2

1

1

1

1

Dynamic Programming: Examples

 Example: 𝑆= XYXZPQ, 𝑇=YXQYXP

𝐿 𝑃
0 1 1 1 1 1

1 1 1 2 2 2

1 2 2 2 3 3

1 2 2 2 3 3

1 2 2 2 3 4

1 2 3 3 3 4

Dynamic Programming

Memoization

 Problem(longest common subsequence): Let 𝑆 and 𝑇 be strings of
characters. 𝑆 is of length 𝑛 and 𝑇 is of length 𝑚. Find the longest
common subsequence. This is the longest sequence of characters that
appear in both 𝑆 and 𝑇. The characters are not necessarily
contiguous.

 Example: 𝑆 = XYXZPQ, 𝑇 = YXQYXP.
 The longest common subsequence is XYXP

 𝑆=XYXZPQ, 𝑇= YXQYXP

Dynamic Programming: Examples

 Claim 1: If 𝑖 = 0 or 𝑗 = 0, then 𝐿(𝑖, 𝑗) = 0.

 Claim 2: If 𝑆[𝑖] = 𝑇[𝑗], then 𝐿 𝑖, 𝑗 = 1 + 𝐿(𝑖 − 1, 𝑗 − 1).

 Claim 3: If 𝑆[𝑖] ≠ 𝑇[𝑗], then
𝐿(𝑖, 𝑗) = max(𝐿(𝑖 − 1, 𝑗), 𝐿(𝑖, 𝑗 − 1)).

Dynamic Programming: Examples

Length-LCS(𝑆, 𝑛, 𝑇,𝑚)

- if (𝑛 = 0 OR 𝑚 = 0) then return(0)

- if (𝑆 𝑛 = 𝑇[𝑚]) return(1+Length-LCS(𝑆, 𝑛 − 1, 𝑇,𝑚 − 1))

- if (𝑆 𝑛 ≠ 𝑇[𝑚])
return(max(Length-LCS(𝑆, 𝑛, 𝑇,𝑚 − 1)),Length-LCS(𝑆, 𝑛 − 1, 𝑇,𝑚)))

 Recursive program to find the length of the longest common

subsequence.

 What is the running time of the above algorithm?

 Could be exponentially large in the worst case!

 Memoized version of the algorithm:

Dynamic Programming: Examples

Length-LCS(𝑆, 𝑛, 𝑇,𝑚)

- if (𝑛 = 0 OR 𝑚 = 0) then return(0)

- if (𝐿[𝑛,𝑚] is known) then return(𝐿[𝑛,𝑚])
- if (𝑆 𝑛 = 𝑇[𝑚]) then

𝑙𝑒𝑛𝑔𝑡ℎ = 1+Length-LCS(𝑆, 𝑛 − 1, 𝑇,𝑚 − 1)

- if (𝑆 𝑛 ≠ 𝑇[𝑚]) then
𝑙𝑒𝑛𝑔𝑡ℎ = max(Length-LCS(𝑆, 𝑛, 𝑇,𝑚 − 1)),Length-LCS(𝑆, 𝑛 − 1, 𝑇,𝑚))

- 𝐿[𝑛,𝑚] = 𝑙𝑒𝑛𝑔𝑡ℎ
- return(𝑙𝑒𝑛𝑔𝑡ℎ)

 What is the running time of the above algorithm?

 Memoized version of the algorithm:

Dynamic Programming: Examples

Length-LCS(𝑆, 𝑛, 𝑇,𝑚)

- if (𝑛 = 0 OR 𝑚 = 0) then return(0)

- if (𝐿[𝑛,𝑚] is known) then return(𝐿[𝑛,𝑚])
- if (𝑆 𝑛 = 𝑇[𝑚]) then

𝑙𝑒𝑛𝑔𝑡ℎ = 1+Length-LCS(𝑆, 𝑛 − 1, 𝑇,𝑚 − 1)

- if (𝑆 𝑛 ≠ 𝑇[𝑚]) then
𝑙𝑒𝑛𝑔𝑡ℎ = max(Length-LCS(𝑆, 𝑛, 𝑇,𝑚 − 1)),Length-LCS(𝑆, 𝑛 − 1, 𝑇,𝑚))

- 𝐿[𝑛,𝑚] = 𝑙𝑒𝑛𝑔𝑡ℎ
- return(𝑙𝑒𝑛𝑔𝑡ℎ)

 What is the running time of the above algorithm?

 𝑂(𝑛𝑚)

Dynamic Programming: Examples

Matrix Chain Multiplication

 Problem(matrix chain multiplication): You are given a sequence of 𝑛
matrices 𝑀1, … ,𝑀𝑛 of size (𝑚1 ×𝑚2), (𝑚2 ×𝑚3), … , (𝑚𝑛 ×

𝑚𝑛+1
). Determine in what order these matrices should be multiplied

(using naïve method) so as to reduce the total running time.

 Example: Consider four matrices of size

 𝑀1: 50 × 20

 𝑀2: 20 × 1

 𝑀3: 1 × 10

 𝑀4: 10 × 100

Dynamic Programming: Examples

 𝑀1 ×𝑀2 ×𝑀3 ×𝑀4 = 𝑀1 × ((𝑀2 ×𝑀3) × 𝑀4)
 Time:

 𝑀1 ×𝑀2 ×𝑀3 ×𝑀4 = (𝑀1 × (𝑀2 ×𝑀3)) × 𝑀4

 Time:

 𝑀1 ×𝑀2 ×𝑀3 ×𝑀4 = (𝑀1 ×𝑀2) × (𝑀3 ×𝑀4)
 Time:

 Problem(matrix chain multiplication): You are given a sequence of 𝑛
matrices 𝑀1, … ,𝑀𝑛 of size (𝑚1 ×𝑚2), (𝑚2 ×𝑚3), … , (𝑚𝑛 ×

𝑚𝑛+1
). Determine in what order these matrices should be multiplied

(using naïve method) so as to reduce the total running time.

 Example: Consider four matrices of size

 𝑀1: 50 × 20

 𝑀2: 20 × 1

 𝑀3: 1 × 10

 𝑀4: 10 × 100

Dynamic Programming: Examples

 𝑀1 ×𝑀2 ×𝑀3 ×𝑀4 = 𝑀1 × ((𝑀2 ×𝑀3) × 𝑀4)
 Time: 20 ⋅ 10 + 20 ⋅ 10 ⋅ 100 + 50 ⋅ 20 ⋅ 100

 𝑀1 ×𝑀2 ×𝑀3 ×𝑀4 = (𝑀1 × (𝑀2 ×𝑀3)) × 𝑀4

 Time: 20 ⋅ 10 + 50 ⋅ 20 ⋅ 10 + 50 ⋅ 10 ⋅ 100
 𝑀1 ×𝑀2 ×𝑀3 ×𝑀4 = (𝑀1 ×𝑀2) × (𝑀3 ×𝑀4)

 Time: 50 ⋅ 20 + 10 ⋅ 100 + 50 ⋅ 100

Dynamic Programming: Examples

 𝐶(𝑖, 𝑗): Minimum cost of multiplying matrices 𝑀𝑖, … ,𝑀𝑗.

 𝐶(𝑖, 𝑖) = 0

 𝐶(𝑖, 𝑗)?

Dynamic Programming: Examples

 𝐶(𝑖, 𝑗): Minimum cost of multiplying matrices 𝑀𝑖, … ,𝑀𝑗.

 𝐶(𝑖, 𝑖) = 0

 𝐶(𝑖, 𝑗) = min
𝑖≤𝑘<𝑗

𝐶 𝑖, 𝑘 + 𝐶 𝑘 + 1, 𝑗 + 𝑚𝑖 ⋅ 𝑚𝑘+1 ⋅ 𝑚𝑗+1

Matrix-Cost(𝑀1, … ,𝑀𝑛)

- for 𝑖 = 1 to 𝑛

- 𝐶[𝑖, 𝑖] = 0

- for 𝑠 = 1 to 𝑛 − 1

- for 𝑖 = 1 to 𝑛 − 𝑠

- 𝑗 = 𝑖 + 𝑠

- 𝐶 𝑖, 𝑗 = min
𝑖≤𝑘<𝑗

𝐶 𝑖, 𝑘 + 𝐶 𝑘 + 1, 𝑗 + 𝑚𝑖 ⋅ 𝑚𝑘+1 ⋅ 𝑚𝑗+1

- return(𝐶[1, 𝑛])

 Running time:

Dynamic Programming: Examples

 𝐶(𝑖, 𝑗): Minimum cost of multiplying matrices 𝑀𝑖, … ,𝑀𝑗.

 𝐶(𝑖, 𝑖) = 0

 𝐶(𝑖, 𝑗) = min
𝑖≤𝑘<𝑗

𝐶 𝑖, 𝑘 + 𝐶 𝑘 + 1, 𝑗 + 𝑚𝑖 ⋅ 𝑚𝑘+1 ⋅ 𝑚𝑗+1

Matrix-Cost(𝑀1, … ,𝑀𝑛)

- for 𝑖 = 1 to 𝑛

- 𝐶[𝑖, 𝑖] = 0

- for 𝑠 = 1 to 𝑛 − 1

- for 𝑖 = 1 to 𝑛 − 𝑠

- 𝑗 = 𝑖 + 𝑠

- 𝐶 𝑖, 𝑗 = min
𝑖≤𝑘<𝑗

𝐶 𝑖, 𝑘 + 𝐶 𝑘 + 1, 𝑗 + 𝑚𝑖 ⋅ 𝑚𝑘+1 ⋅ 𝑚𝑗+1

- return(𝐶[1, 𝑛])

 Running time: 𝑂(𝑛3).

End

