CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Dynamic Programming: Examples

Longest Common Subsequence

Dynamic Programming: Examples

- Problem(longest common subsequence): Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence. This is the longest sequence of characters that appear in both S and T. The characters are not necessarily contiguous.
- Example: $S=$ XYXZPQ, $T=$ YXQYXP.
- The longest common subsequence is XYXP
- $S=\mathrm{XYXZPQ}, T=\mathrm{YXQYXP}$
- Let $L(i, j)$ denote the length of the longest common subsequence in the strings $(S[1] \ldots S[i])$ and ($T[1] \ldots T[j])$
- What is $L(1, j)$ for $1<j \leq m$?

Dynamic Programming: Examples

- Problem(longest common subsequence): Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence. This is the longest sequence of characters that appear in both S and T. The characters are not necessarily contiguous.
- Example: $S=$ XYXZPQ, $T=$ YXQYXP.
- The longest common subsequence is XYXP
- $S=\mathrm{XYXZPQ}, T=\mathrm{YXQYXP}$
- Let $L(i, j)$ denote the length of the longest common subsequence in the strings $(S[1] \ldots S[i])$ and (T[1] ...T[j])
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string (T[1] ...T[j]).

Dynamic Programming: Examples

- Problem(longest common subsequence): Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence. This is the longest sequence of characters that appear in both S and T. The characters are not necessarily contiguous.
- Example: $S=$ XYXZPQ, $T=$ YXQYXP.
- The longest common subsequence is XYXP
- $S=\mathrm{XYXZPQ}, T=\mathrm{YXQYXP}$
- Let $L(i, j)$ denote the length of the longest common subsequence in the strings $(S[1] \ldots S[i])$ and (T[1] ...T[j])
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string (T[1] ...T[j]).
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)$.

Dynamic Programming: Examples

- Let $L(i, j)$ denote the length of the longest common subsequence in the strings $(S[1] \ldots S[i])$ and ($T[1] \ldots T[j])$
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $(T[1] \ldots T[j])$.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)$.
- Similarly, we can define $L(i, 1)$.
- Can you say something similar for $L(i, j)$ for $i, j \neq 1$?

Dynamic Programming: Examples

- Let $L(i, j)$ denote the length of the longest common subsequence in the strings $(S[1] \ldots S[i])$ and ($T[1] \ldots T[j])$
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $(T[1] \ldots T[j])$.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)$.
- Similarly, we can define $L(i, 1)$.
- Can you say something similar for $L(i, j)$ for $i, j \neq 1$?
- Claim 1: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.

Dynamic Programming: Examples

- Let $L(i, j)$ denote the length of the longest common subsequence in the strings $(S[1] \ldots S[i])$ and ($T[1] \ldots T[j])$
- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $(T[1] \ldots T[j])$.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)$.
- Similarly, we can define $L(i, 1)$.
- Can you say something similar for $L(i, j)$ for $i, j \neq 1$?
- Claim 1: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.
- Claim 2: If $S[i] \neq T[j]$, then

$$
L(i, j)=\max (L(i-1, j), L(i, j-1)) .
$$

Dynamic Programming: Examples

- What is $L(1, j)$ for $1<j \leq m$?
- 1 if $S[1]$ is present in the string $(T[1] \ldots T[j])$.
- 1 if $S[1]=T[j]$ else $L(1, j)=L(1, j-1)$.
- Can you say something similar for $L(i, j)$ for $i, j \neq 1$?
- Claim 1: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.
- Claim 2: If $S[i] \neq T[j]$, then $L(i, j)=\max (L(i-1, j), L(i, j-1))$.

- The black arrows show dependencies between sub-problems.

Dynamic Programming: Examples

Length-LCS (S, T)

- if $(S[1]=T[1])$ then $L[1,1]=1$ else $L[1,1]=0$
- for $j=2$ to m
- If $(S[1]=T[j])$ then $L[1, j]=1$ else $L[1, j]=L[1, j-1]$
- for $i=2$ to n
- If $(S[i]=T[1])$ then $L[i, 1]=1$ else $L[i, 1]=L[i-1,1]$
- for $i=2$ to n
- for $j=2$ to m

$$
\begin{aligned}
& - \text { if }(S[i]=T[j]) \text { then } L[i, j]=1+L[i-1, j-1] \\
& \text { else } L[i, j]=\max (L[i-1, j], L[i, j-1])
\end{aligned}
$$

Dynamic Programming: Examples

- How do we find the longest common subsequence?

- The black arrows show dependencies between sub-problems.

P
i

- Array P is used to maintain the pointers to the appropriate sub-problem.
- The blue squares give the position of the characters in a longest common subsequence.

Dynamic Programming: Examples

- Example: $S=$ XYXZPQ, $T=$ YXQYXP

L

0	1	1	1	1	1
1					
1					
1					
1					
1					

P

Dynamic Programming: Examples

- Example: $S=$ XYXZPQ, $T=$ YXQYXP

L

0	1	1	1	1	1
1	1				
1					
1					
1					
1					

P

Dynamic Programming: Examples

- Example: $S=$ XYXZPQ, $T=$ YXQYXP

L

0	1	1	1	1	1
1	1	1			
1					
1					
1					
1					

P

Dynamic Programming: Examples

- Example: $S=$ XYXZPQ, $T=$ YXQYXP

L

0	1	1	1	1	1
1	1	1	2		
1					
1					
1					
1					

P

Dynamic Programming: Examples

- Example: $S=$ XYXZPQ, $T=$ YXQYXP

L

0	1	1	1	1	1
1	1	1	2	2	2
1					
1					
1					
1					

P

Dynamic Programming: Examples

- Example: $S=$ XYXZPQ, $T=$ YXQYXP

L

0	1	1	1	1	1
1	1	1	2	2	2
1	2	2	2	3	3
1	2	2	2	3	3
1	2	2	2	3	4
1	2	3	3	3	4

Dynamic Programming

Memoization

Dynamic Programming: Examples

- Problem(longest common subsequence): Let S and T be strings of characters. S is of length n and T is of length m. Find the longest common subsequence. This is the longest sequence of characters that appear in both S and T. The characters are not necessarily contiguous.
- Example: $S=$ XYXZPQ, $T=$ YXQYXP.
- The longest common subsequence is XYXP
- $S=\mathrm{XYXZPQ}, T=Y \mathrm{YQYXP}$
- Claim 1: If $i=0$ or $j=0$, then $L(i, j)=0$.
- Claim 2: If $S[i]=T[j]$, then $L(i, j)=1+L(i-1, j-1)$.
- Claim 3: If $S[i] \neq T[j]$, then $L(i, j)=\max (L(i-1, j), L(i, j-1))$.

Dynamic Programming: Examples

- Recursive program to find the length of the longest common subsequence.

$$
\begin{aligned}
& \text { Length- } \operatorname{LCS}(S, n, T, m) \\
& \quad \text { - if }(n=0 \text { OR } m=0) \text { then return }(0) \\
& \text { - if }(S[n]=T[m]) \text { return }(1+\operatorname{Length-\operatorname {LCS}(S,n-1,T,m-1))} \\
& \text { - if }(S[n] \neq T[m]) \\
& \quad \text { return }(\max (\operatorname{Length}-\operatorname{LCS}(S, n, T, m-1)), \operatorname{Length}-\operatorname{LCS}(S, n-1, T, m)))
\end{aligned}
$$

- What is the running time of the above algorithm?
- Could be exponentially large in the worst case!

Dynamic Programming: Examples

- Memoized version of the algorithm:

Length $-\operatorname{LCS}(S, n, T, m)$

- if $(n=0$ OR $m=0$) then return (0)
- if $(L[n, m]$ is known) then $\operatorname{return}(L[n, m])$
- if $(S[n]=T[m])$ then
length $=1+$ Length $-\operatorname{LCS}(S, n-1, T, m-1)$
- if $(S[n] \neq T[m])$ then
length $=\max (\operatorname{Length}-\operatorname{LCS}(S, n, T, m-1)), \operatorname{Length}-\operatorname{LCS}(S, n-1, T, m))$
- $L[n, m]=$ length
- return(length)
- What is the running time of the above algorithm?

Dynamic Programming: Examples

- Memoized version of the algorithm:

Length $-\operatorname{LCS}(S, n, T, m)$

- if $(n=0$ OR $m=0$) then return (0)
- if $(L[n, m]$ is known) then $\operatorname{return}(L[n, m])$
- if $(S[n]=T[m])$ then
length $=1+$ Length $-\operatorname{LCS}(S, n-1, T, m-1)$
- if $(S[n] \neq T[m])$ then
length $=\max (\operatorname{Length}-\operatorname{LCS}(S, n, T, m-1)), \operatorname{Length}-\operatorname{LCS}(S, n-1, T, m))$
- $L[n, m]=$ length
- return(length)
- What is the running time of the above algorithm?
- $O(n m)$

Dynamic Programming: Examples

Matrix Chain Multiplication

Dynamic Programming: Examples

- Problem(matrix chain multiplication): You are given a sequence of n matrices M_{1}, \ldots, M_{n} of size $\left(m_{1} \times m_{2}\right),\left(m_{2} \times m_{3}\right), \ldots,\left(m_{n} \times\right.$ $\left.m_{n+1}\right)$. Determine in what order these matrices should be multiplied (using naïve method) so as to reduce the total running time.
- Example: Consider four matrices of size
- $M_{1}: 50 \times 20$
- $M_{2}: 20 \times 1$
- $M_{3}: 1 \times 10$
- $M_{4}: 10 \times 100$
- $M_{1} \times M_{2} \times M_{3} \times M_{4}=M_{1} \times\left(\left(M_{2} \times M_{3}\right) \times M_{4}\right)$
- Time:
- $M_{1} \times M_{2} \times M_{3} \times M_{4}=\left(M_{1} \times\left(M_{2} \times M_{3}\right)\right) \times M_{4}$
- Time:
- $M_{1} \times M_{2} \times M_{3} \times M_{4}=\left(M_{1} \times M_{2}\right) \times\left(M_{3} \times M_{4}\right)$
- Time:

Dynamic Programming: Examples

- Problem(matrix chain multiplication): You are given a sequence of n matrices M_{1}, \ldots, M_{n} of size $\left(m_{1} \times m_{2}\right),\left(m_{2} \times m_{3}\right), \ldots,\left(m_{n} \times\right.$ $\left.m_{n+1}\right)$. Determine in what order these matrices should be multiplied (using naïve method) so as to reduce the total running time.
- Example: Consider four matrices of size
- $M_{1}: 50 \times 20$
- $M_{2}: 20 \times 1$
- $M_{3}: 1 \times 10$
- $M_{4}: 10 \times 100$
- $M_{1} \times M_{2} \times M_{3} \times M_{4}=M_{1} \times\left(\left(M_{2} \times M_{3}\right) \times M_{4}\right)$
- Time: $20 \cdot 10+20 \cdot 10 \cdot 100+50 \cdot 20 \cdot 100$
- $M_{1} \times M_{2} \times M_{3} \times M_{4}=\left(M_{1} \times\left(M_{2} \times M_{3}\right)\right) \times M_{4}$
- Time: $20 \cdot 10+50 \cdot 20 \cdot 10+50 \cdot 10 \cdot 100$
- $M_{1} \times M_{2} \times M_{3} \times M_{4}=\left(M_{1} \times M_{2}\right) \times\left(M_{3} \times M_{4}\right)$
- Time: $50 \cdot 20+10 \cdot 100+50 \cdot 100$

Dynamic Programming: Examples

- $C(i, j)$: Minimum cost of multiplying matrices M_{i}, \ldots, M_{j}.
- $C(i, i)=0$
- $C(i, j)$?

Dynamic Programming: Examples

- $C(i, j)$: Minimum cost of multiplying matrices M_{i}, \ldots, M_{j}.
- $C(i, i)=0$
- $C(i, j)=\min _{i \leq k<j}\left(C(i, k)+C(k+1, j)+m_{i} \cdot m_{k+1} \cdot m_{j+1}\right)$

$$
\begin{aligned}
& \text { Matrix- } \operatorname{Cost}\left(M_{1}, \ldots, M_{n}\right) \\
& \quad \begin{array}{l}
\text { - for } i \\
\quad=1 \text { to } n \\
\quad-C[i, i]=0 \\
\text { - for } s=1 \text { to } n-1 \\
\quad-\text { for } i=1 \text { to } n-s \\
\quad-j=i+s \\
\quad-C[i, j]=\min _{i \leq k<j}\left(C[i, k]+C[k+1, j]+m_{i} \cdot m_{k+1} \cdot m_{j+1}\right) \\
-\operatorname{return}(C[1, n])
\end{array}
\end{aligned}
$$

- Running time:

Dynamic Programming: Examples

- $C(i, j)$: Minimum cost of multiplying matrices M_{i}, \ldots, M_{j}.
- $C(i, i)=0$
- $C(i, j)=\min _{i \leq k<j}\left(C(i, k)+C(k+1, j)+m_{i} \cdot m_{k+1} \cdot m_{j+1}\right)$

$$
\begin{aligned}
& \text { Matrix- } \operatorname{Cost}\left(M_{1}, \ldots, M_{n}\right) \\
& \quad \begin{array}{l}
\text { - for } i \\
\quad=1 \text { to } n \\
\quad-C[i, i]=0 \\
\text { - for } s=1 \text { to } n-1 \\
\quad-\text { for } i=1 \text { to } n-s \\
\quad-j=i+s \\
\quad-C[i, j]=\min _{i \leq k<j}\left(C[i, k]+C[k+1, j]+m_{i} \cdot m_{k+1} \cdot m_{j+1}\right) \\
\quad-\operatorname{return}(C[1, n])
\end{array}
\end{aligned}
$$

- Running time: $O\left(n^{3}\right)$.

End

