CSL 356: Analysis and Design of

Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Dynamic Programming: Examples

Longest Common Subsequence

. . A
Dynamic Programming: Examples

® Problem(longest common subsequence): Let S and T be strings of
characters. S is of length N and T is of length m. Find the longest
common subsequence. This is the longest sequence of characters that

appear in both S and T . The characters are not necessarily
contiguous.

° Example: S = XYXZPQ, T =YXQYXP.
® The longest common subsequence is XYXP

o S=XYXZPQ, T=YXQYXP

* Let L(i,j) denote the length of the longest common
subsequence in the strings (§[1] ... S[i]) and (T[1] ... T|j])
e Whatis L(1,j) for1 <j <me

e

Dynamic Programming: Examples

® Problem(longest common subsequence): Let S and T be strings of
characters. S is of length N and T is of length m. Find the longest
common subsequence. This is the longest sequence of characters that

appear in both S and T . The characters are not necessarily
contiguous.

° Example: S = XYXZPQ, T =YXQYXP.
® The longest common subsequence is XYXP

o S=XYXZPQ, T=YXQYXP

* Let L(i,j) denote the length of the longest common
subsequence in the strings (§[1] ... S[i]) and (T[1] ... T|j])
e Whatis L(1,j) for1 <j <me
e 1if S[1]is present in the string (T [1] ... T[j]).

™~

4 _ _ N
Dynamic Programming: Examples

® Problem(longest common subsequence): Let S and T be strings of
characters. S is of length N and T is of length m. Find the longest
common subsequence. This is the longest sequence of characters that

appear in both S and T . The characters are not necessarily
contiguous.

° Example: S = XYXZPQ, T =YXQYXP.
® The longest common subsequence is XYXP

o S=XYXZPQ, T=YXQYXP

* Let L(i,j) denote the length of the longest common
subsequence in the strings (§[1] ... S[i]) and (T[1] ... T|j])
e Whatis L(1,j) for1 <j <me
e 1if S[1]is present in the string (T [1] ... T[j]).
e 1ifS[1] =TJ|j]else L(1,j) =L(1,j — 1).

Dynamic Programming: Examples
* Let L(i,j) denote the length of the longest common
subsequence in the strings (§[1] ... S|i]) and (T[1] ... T|j])
e Whatis L(1,j) for1 <j <me
e 1if S[1]is present in the string (T [1] ... T|j]).
e 1ifS[1] =TJ|j]else L(1,j) =L(1,j —1).
e Similarly, we can define L(i, 1).
* Can you say something similar for L({, j) for i,j # 17

e

Dynamic Programming: Examples
* Let L(i,j) denote the length of the longest common
subsequence in the strings (§[1] ... S|i]) and (T[1] ... T|j])
e Whatis L(1,j) for1 <j <me
e 1if S[1]is present in the string (T [1] ... T|j]).
e 1ifS[1] =TJ|j]else L(1,j) =L(1,j —1).
e Similarly, we can define L(i, 1).
* Can you say something similar for L({, j) for i,j # 17
® Claim 1:If S[i] = T[j], then L(i,j) =1+ L(i —1,j — 1).

™~

Dynamic Programming: Examples
* Let L(i,j) denote the length of the longest common
subsequence in the strings (§[1] ... S|i]) and (T[1] ... T|j])
e Whatis L(1,j) for1 <j <me
e 1if S[1]is present in the string (T [1] ... T|j]).
e 1ifS[1] =TJ|j]else L(1,j) =L(1,j —1).
e Similarly, we can define L(i, 1).
* Can you say something similar for L({, j) for i,j # 17
® Claim 1:If S[i] = T[j], then L(i,j) =1+ L(i —1,j — 1).
® Claim 2: If S[i] # T[j], then
LG,) = max(L(i — 1,), L(i,j — 1)).

e

. . h
Dynamic Programming: Examples
e Whatis L(1,j) for 1 <j <m?
e 1if S[1] is present in the string (T[1] ... T[j]).
e 1ifS[1]=TJj]else L(1,j) =L(1,j —1).
* Can you say something similar for L(i, j) for i,j # 17
® Claim 1: If S[i] = T|[j],then L(i,j) = 1 + L(i—1,j —1).
® Claim 2: If S[i] # T|j], then L(i,j) = max(L(i — 1,j),L(i,j — 1)).
L J
R * The black arrows show dependencies
between sub-problems.
/

e

Dynamic Programming: Examples

Length-LCS(S, T)
-if (§[1] = T[1])then L[1,1] = 1 else L[1,1] =0
~forj=2tom

-1 (S[1] = T[j]) then L[1,j] = 1else L|1,j] = L[1,j — 1]

fori=2ton

-1t (S[i] = T[1]) then L[i,1] = 1lelse L[i,1] = L[i — 1,1]

fori=2ton

~forj=2tom
-if (S[i] = T[j] then L[i,j] = 1+ L[i—1,j —1]
else L[i,j] = max(L[i — 1,j],L[i,j — 1])

™~

e

Dynamic Programming: Examples

e How do we find the longest common subsequence?

i p i

™~

<
~

A
A
A
A
A
A

A >

| A
* Array P is used to maintain the pointers

* The black arrows show dependencies to the appropriate sub-problem.
between sub-problems. * The blue squares give the position of the

characters in a longest common subsequence.

/

e

Dynamic Programming: Examples
e Example: = XYXZPQ, T=YXQYXP

P

I

| | | | | ;-

™~

e

Dynamic Programming: Examples
e Example: = XYXZPQ, T=YXQYXP

P

I

1 1 1 1 1
1

™~

e

Dynamic Programming: Examples
e Example: = XYXZPQ, T=YXQYXP

P

I

R
A
N |

™~

e

Dynamic Programming: Examples
e Example: = XYXZPQ, T=YXQYXP

P

1 1 1 1 1
1 1 2

™~

e

Dynamic Programming: Examples
e Example: = XYXZPQ, T=YXQYXP

P

1 1 1 1 1
1 1 2 2 2
€

™~

e

Dynamic Programming: Examples
e Example: = XYXZPQ, T=YXQYXP

P A

™~

Dynamic Programming

Memoization

4 . . N
Dynamic Programming: Examples

® Problem(longest common subsequence): Let S and T be strings of
characters. S is of length N and T is of length m. Find the longest
common subsequence. This is the longest sequence of characters that

appear in both S and T . The characters are not necessarily
contiguous.

° Example: S = XYXZPQ, T =YXQYXP.
® The longest common subsequence is XYXP

o S=XYXZPQ, T=YXQYXP

® Claim 1: Ifi =0orj =0, then L(i,j) = 0.
® Claim 2: If S[i] = T|j],thenL(i,j) =1+ L({i—1,j —1).
e Claim 3:If S[i] # T|j], then

L(i,j) =max(L(i—1,j),L(i,j — 1)).

. . A
Dynamic Programming: Examples

® Recursive program to find the length of the longest common

subsequence.

Length—LCS(S, n, T, m)
-if (n = 0 OR m = 0) then return(0)
-if (S In] = T|m]) return(1+Length—LCS(S, n—1,T,m—1))

-if (§[n] # T[m))
return(max(Length-LCS(S,n, T, m — 1)),Length-LCS(S,n — 1,T, m)))

® What is the running time of the above algorithm?

® Could be exponentially large in the worst case!

e

Dynamic Programming: Examples

® Memoized version of the algorithm:

Length—LCS(S ,n, T, m)
-if (n = 0 ORm = 0) then return(0)
- if (L[n, m] is known) then return(L[n, m])
-if (S[n] = T[m]) then
length = 1+Length-LCS(S,n —1,T,m — 1)
-if (S[n] # T[m]) then
length = max(Length-LCS(S,n,T,m — 1)),Length-LCS(S,n — 1,T, m))
- L[n,m] = length
- return(length)

e What is the running time of the above algorithm?

Dynamic Programming: Examples

® Memoized version of the algorithm:

Length—LCS(S, n, T, m)
-if (n = 0 OR m = 0) then return(0)
- if (L|n, m] is known) then return(L[n, m])
-if (S[n] = T[m]) then
length = 1+Length-LCS(S,n —1,T,m — 1)
-if (S[n] # T[m]) then
length = max(Length-LCS(S,n,T,m — 1)),Length-LCS(S,n — 1,T, m))
- L[n,m] = length
- return(length)

e What is the running time of the above algorithm?

e O(nm)

Dynamic Programming: Examples

Matrix Chain Multiplication

4 . . N
Dynamic Programming: Examples

® Problem(matrix chain multiplication): You are given a sequence of n
matrices M 4, ..., M, of size (m; X m,), (m, X my), ..., (m,, X
my,. 1). Determine in what order these matrices should be multiplied
(using naive method) so as to reduce the total running time.

* Example: Consider four matrices of size
e M,:50 x 20
e M,:20x 1
® M3: 1x10
e M,:10 x 100

o M X M, X M3 X M, = My X (M, X M3) X M,)

® Time:

e M{ X My X M3 X My, = (M; X (M, X M3)) X M,
® Time:

e M{ X My X M3 X M, = (M; X M,) X (M3 X M,)
® Time:

4 . .
Dynamic Programming: Examples

® Problem(matrix chain multiplication): You are given a sequence of n
matrices M 4, ..., M, of size (m; X m,), (m, X my), ..., (m,, X
my,. 1). Determine in what order these matrices should be multiplied
(using naive method) so as to reduce the total running time.

* Example: Consider four matrices of size
e M,:50 x 20
e M,:20x 1
® M3: 1x10
e M,:10 x 100

o M X M, X M3 X M, = My X (M, X M3) X M,)
® Time: 20-10 + 20-10-100 + 50-20-100

e M{ X My X M3 X My, = (M; X (M, X M3)) X M,
® Time: 20-10 + 50-20-10 + 50-10-100

o M X My X M3 X M, = (My X My) X (M3 X M,)
e Time: 50 - 20 + 10-100 + 50-100

. . A
Dynamic Programming: Examples

e C(i,j): Minimum cost of multiplying matrices M, ..., M i
e C(i,i) =0
e C(i,j)?

Dynamic Programming: Examples

e C(i,j): Minimum cost of multiplying matrices M, ..., M.
e C(i,i) =0
° C(i,)) = min (C(i, k) + C(k +1,7) +m; - myeyq - mjps)

i<k<j

Matrix-Cost(M 4, ..., M.))
-fori=1ton
-C[i,i] = 0
-fors=1ton—1
fori=1lton—=s
-J=1i+s

-Cli, j] = irsrkigj(C[i, kl+Clk+1,j] +m; -my,q- m]-+1)

-return(C[1,n))

° Running time:

Dynamic Programming: Examples

e C(i,j): Minimum cost of multiplying matrices M, ..., M.
e C(i,i) =0
° C(i,)) = min (C(i, k) + C(k +1,7) +m; - myeyq - mjps)

i<k<j

Matrix-Cost(M 4, ..., M.))
-fori=1ton
-C[i,i] = 0
-fors=1ton—1
fori=1lton—=s
-J=1i+s

-Cli, j] = irsrkigj(C[i, kl+Clk+1,j] +m; -my,q- m]-+1)

-return(C[1,n))

® Running time: 0 (n3).

End

