
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Techniques

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flows

 Computational Intractability

Dynamic Programming

Dynamic Programming: Main Ideas

 Break the given problem into a few sub-problems and combine the

optimal solution of the smaller sub-problems to get optimal solutions

to larger ones.

 How is it different from Divide-and-Conquer?

 Here you are allowed to have overlapping sub-problems.

 Suppose your recursive algorithm gives a recursion tree that has many

common sub-problems (e.g., recursion for computing fibonacci

numbers), then it helps to save the solution of sub-problems and use

this solution whenever the same sub-problem is called.

 Dynamic programming algorithms are also called table-filling

algorithms.

Dynamic Programming: Examples

 Problem (longest increasing subsequence): You are given a
sequence of integers 𝐴[1], … , 𝐴[𝑛] and you are asked to
find the longest increasing subsequence of integers.

 Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is (2, 3, 6, 7).

 Let 𝐿(𝑖) denote the length of the longest increasing

subsequence that ends with the number 𝐴[𝑖].

 What is 𝐿(1)?

Dynamic Programming: Examples

 Problem (longest increasing subsequence): You are given a
sequence of integers 𝐴[1], … , 𝐴[𝑛] and you are asked to
find the longest increasing subsequence of integers.

 Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is (2, 3, 6, 7).

 Let 𝐿(𝑖) denote the length of the longest increasing

subsequence that ends with the number 𝐴[𝑖].

 What is 𝐿(1)?

 𝐿 1 = 1.

Dynamic Programming: Examples

 Problem (longest increasing subsequence): You are given a
sequence of integers 𝐴[1], … , 𝐴[𝑛] and you are asked to
find the longest increasing subsequence of integers.

 Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is (2, 3, 6, 7).

 Let 𝐿(𝑖) denote the length of the longest increasing

subsequence that ends with the number 𝐴[𝑖].

 What is 𝐿(1)?

 𝐿 1 = 1.

 What is the value of 𝐿(𝑖) in terms of 𝐿(1), … , 𝐿(𝑖 − 1)?

Dynamic Programming: Examples

 Problem (longest increasing subsequence): You are given a
sequence of integers 𝐴[1], … , 𝐴[𝑛] and you are asked to
find the longest increasing subsequence of integers.

 Example: The longest increasing subsequence of the sequence
(7, 2, 8, 6, 3, 6, 9, 7) is (2, 3, 6, 7).

 Let 𝐿(𝑖) denote the length of the longest increasing

subsequence that ends with the number 𝐴[𝑖].

 What is 𝐿(1)?

 𝐿 1 = 1.

 What is the value of 𝐿(𝑖) in terms of 𝐿(1), … , 𝐿(𝑖 − 1)?

 𝐿 𝑖 = max
𝑗<𝑖,𝐴 𝑗 ≤𝐴[𝑖]

(1 + 𝐿(𝑗)).

Dynamic Programming: Examples

 Let 𝑛 = 9 and (𝐴[1],… , 𝐴[9]) = (7, 2, 8, 6, 3, 1, 9, 7,10).

 𝐿(1) = 1

 𝐿(2) = 1

 𝐿(3) = 2

 𝐿(4) = 2

 𝐿(5) = 2

 𝐿(6) = 1

 𝐿(7) =

Dynamic Programming: Examples

 Let 𝑛 = 9 and (𝐴[1],… , 𝐴[9]) = (7, 2, 8, 6, 3, 1, 9, 7,10).

 𝐿(1) = 1

 𝐿(2) = 1

 𝐿(3) = 2

 𝐿(4) = 2

 𝐿(5) = 2

 𝐿(6) = 1

 𝐿(7) = max(2, 2, 3, 3, 3, 2) = 3

 𝐿(8) = max(2, 2, 3, 3, 2) = 3

 𝐿(9) = max(2, 2, 3, 3, 3, 2, 4, 4) = 4

Dynamic Programming: Examples

 Let 𝑛 = 9 and (𝐴[1],… , 𝐴[9]) = (7, 2, 8, 6, 3, 1, 9, 7,10).

 𝐿(1) = 1

 𝐿(2) = 1

 𝐿(3) = 2

 𝐿(4) = 2

 𝐿(5) = 2

 𝐿(6) = 1

 𝐿(7) = max(2, 2, 3, 3, 3, 2) = 3

 𝐿(8) = max(2, 2, 3, 3, 2) = 3

 𝐿(9) = max(2, 2, 3, 3, 3, 2, 4, 4) = 4

 What is the length of the longest increasing subsequence?

Dynamic Programming: Examples

 Let 𝑛 = 9 and (𝐴[1],… , 𝐴[9]) = (7, 2, 8, 6, 3, 1, 9, 7,10).

 𝐿(1) = 1

 𝐿(2) = 1

 𝐿(3) = 2

 𝐿(4) = 2

 𝐿(5) = 2

 𝐿(6) = 1

 𝐿(7) = max(2, 2, 3, 3, 3, 2) = 3

 𝐿(8) = max(2, 2, 3, 3, 2) = 3

 𝐿(9) = max(2, 2, 3, 3, 3, 2, 4, 4) = 4

 What is the length of the longest increasing subsequence?

 max
1≤𝑗≤𝑛

𝐿(𝑗)

Dynamic Programming: Examples
Length-LIS(𝐴, 𝑛)

- if (𝑛 = 1) return(1)

- 𝑚𝑎𝑥 ← 1

- for 𝑗 = (𝑛 − 1) to 1

- if (𝐴[𝑗] ≤ 𝐴[𝑛])

- 𝑠 ←Length-LIS(𝐴, 𝑗)

- if (max < 𝑠 + 1) 𝑚𝑎𝑥 ← 𝑠 + 1

- return(max)

 What is the running time for the above algorithm?

 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(𝑛 − 2) + … + 𝑇(1)

Dynamic Programming: Examples
Length-LIS(𝐴, 𝑛)

- if (𝑛 = 1) return(1)

- 𝑚𝑎𝑥 ← 1

- for 𝑗 = (𝑛 − 1) to 1

- if (𝐴[𝑗] ≤ 𝐴[𝑛])

- 𝑠 ←Length-LIS(𝐴, 𝑗)

- if (m𝑎𝑥 < 𝑠 + 1) 𝑚𝑎𝑥 ← 𝑠 + 1

- return(𝑚𝑎𝑥)

 What is the running time for the above algorithm?

 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(𝑛 − 2) + … + 𝑇(1)

 𝑇(𝑛) = 2𝑂(𝑛)

Dynamic Programming: Examples

𝑛 − 1

𝑛

𝑛 − 2 1𝑛 − 3

𝑛 − 2 𝑛 − 3 𝑛 − 4

 Lot of nodes are repeated.

Dynamic Programming: Examples
Length-LIS(𝐴)

- for 𝑖 = 1 to 𝑛
- 𝑚𝑎𝑥 ← 1
- for 𝑗 = 1 to (𝑖 − 1)

- if (𝐴[𝑗] ≤ 𝐴[𝑖])
- if (𝑚𝑎𝑥 < 𝐿[𝑗] + 1)

- 𝑚𝑎𝑥 ← 𝐿[𝑗] + 1
- 𝐿 𝑖 ← 𝑚𝑎𝑥

- return the maximum of 𝐿[𝑖]’s

 What is the running time for the above algorithm?

Dynamic Programming: Examples
Length-LIS(𝐴)

- for 𝑖 = 1 to 𝑛
- 𝑚𝑎𝑥 ← 1
- for 𝑗 = 1 to (𝑖 − 1)

- if (𝐴[𝑗] ≤ 𝐴[𝑖])
- if (𝑚𝑎𝑥 < 𝐿[𝑗] + 1)

- 𝑚𝑎𝑥 ← 𝐿[𝑗] + 1
- 𝐿 𝑖 ← 𝑚𝑎𝑥

- return the maximum of 𝐿[𝑖]’s

 What is the running time for the above algorithm?

 𝑇(𝑛) = 𝑂(𝑛2)

Dynamic Programming: Examples
Length-LIS(𝐴)

- for 𝑖 = 1 to 𝑛
- 𝑚𝑎𝑥 ← 1
- for 𝑗 = 1 to (𝑖 − 1)

- if (𝐴[𝑗] ≤ 𝐴[𝑖])
- if (𝑚𝑎𝑥 < 𝐿[𝑗] + 1)

- 𝑚𝑎𝑥 ← 𝐿[𝑗] + 1
- 𝐿 𝑖 ← 𝑚𝑎𝑥

- return the maximum of 𝐿[𝑖]’s

 What is the running time for the above algorithm?

 𝑇(𝑛) = 𝑂(𝑛2)

 But the problem was to find the longest increasing

subsequence and not the length!

Dynamic Programming: Examples
LIS(𝐴)

- for 𝑖 = 1 to 𝑛

- 𝑚𝑎𝑥 ← 1

- 𝑃[𝑖] = 𝑖

- for 𝑗 = 1 to (𝑖 − 1)

- if (𝐴[𝑗] ≤ 𝐴[𝑖])

- if (𝑚𝑎𝑥 < 𝐿[𝑗] + 1)

- m𝑎𝑥 ← 𝐿[𝑗] + 1

- 𝑃[𝑖] = 𝑗

- 𝐿 𝑖 ← 𝑚𝑎𝑥

- //𝑃 stores the longest increasing subsequence
output this

 But the problem was to find the longest increasing
subsequence and not the length!

 For each number, we just note down the index of the number
preceding this number in a longest increasing subsequence.

Dynamic Programming: Examples

1 1 2 2 2 1 3 3 4

1 2 1 2 2 6 3 4 7

L

P

1 2 3 4 5 6 7 8 9

7 2 8 6 3 1 9 7 10A

LIS(𝐴)

- for 𝑖 = 1 to 𝑛

- 𝑚𝑎𝑥 ← 1

- 𝑃[𝑖] = 𝑖

- for 𝑗 = 1 to (𝑖 − 1)

- if (𝐴[𝑗] ≤ 𝐴[𝑖])

- if (𝑚𝑎𝑥 < 𝐿[𝑗] + 1)

- m𝑎𝑥 ← 𝐿[𝑗] + 1

- 𝑃[𝑖] = 𝑗

- 𝐿[𝑖] = 𝑚𝑎𝑥

- //𝑃 stores the longest increasing subsequence
output this

Dynamic Programming: Examples

1 1 2 2 2 1 3 3 4

1 2 1 2 2 6 3 4 7

L

P

1 2 3 4 5 6 7 8 9

7 2 8 6 3 1 9 7 10A

 So one of the longest increasing subsequence is (7, 8, 9, 10).

Dynamic Programming: Examples

Longest Common Subsequence

 Problem(longest common subsequence): Let 𝑆 and 𝑇 be strings of
characters. 𝑆 is of length 𝑛 and 𝑇 is of length 𝑚. Find the longest
common subsequence. This is the longest sequence of characters that
appear in both 𝑆 and 𝑇. The characters are not necessarily
contiguous.

 Example: 𝑆 = XYXZPQ, 𝑇 = YXQYXP.
 The longest common subsequence is XYXP

 𝑆=XYXZPQ, 𝑇= YXQYXP

Dynamic Programming: Examples

End

Problems to think about:

1. We saw an example where there were exponentially large

number of increasing subsequences such that the length of these

sequences was equal to the length of the longest increasing

subsequence. Can you construct a similar example for the

longest common subsequence problem?

