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Techniques

 Greedy Algorithms

 Divide and Conquer

 Dynamic Programming

 Network Flows

 Computational Intractability



Dynamic Programming



Dynamic Programming: Main Ideas

 Break the given problem into a few sub-problems and combine the 

optimal solution of the smaller sub-problems to get optimal solutions 

to larger ones.

 How is it different from Divide-and-Conquer?

 Here you are allowed to have overlapping sub-problems.

 Suppose your recursive algorithm gives a recursion tree that has many 

common sub-problems (e.g., recursion for computing fibonacci

numbers), then it helps to save the solution of sub-problems and use 

this solution whenever the same sub-problem is called. 

 Dynamic programming algorithms are also called table-filling

algorithms.



Dynamic Programming: Examples

 Problem (longest increasing subsequence): You are given a 
sequence of integers 𝐴[1], … , 𝐴[𝑛] and you are asked to 
find the longest increasing subsequence of integers. 

 Example: The longest increasing subsequence of the sequence  
(7, 2, 8, 6, 3, 6, 9, 7) is   (2, 3, 6, 7).

 Let 𝐿(𝑖) denote the length of the longest increasing 

subsequence that ends with the number 𝐴[𝑖].

 What is 𝐿(1)?
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 Problem (longest increasing subsequence): You are given a 
sequence of integers 𝐴[1], … , 𝐴[𝑛] and you are asked to 
find the longest increasing subsequence of integers. 

 Example: The longest increasing subsequence of the sequence  
(7, 2, 8, 6, 3, 6, 9, 7) is   (2, 3, 6, 7).

 Let 𝐿(𝑖) denote the length of the longest increasing 

subsequence that ends with the number 𝐴[𝑖].

 What is 𝐿(1)?

 𝐿 1 = 1.

 What is the value of 𝐿(𝑖) in terms of 𝐿(1), … , 𝐿(𝑖 − 1)?

 𝐿 𝑖 = max
𝑗<𝑖,𝐴 𝑗 ≤𝐴[𝑖]

(1 + 𝐿(𝑗)).



Dynamic Programming: Examples

 Let 𝑛 = 9 and (𝐴[1],… , 𝐴[9]) = (7, 2, 8, 6, 3, 1, 9, 7,10).

 𝐿(1) = 1

 𝐿(2) = 1

 𝐿(3) = 2

 𝐿(4) = 2

 𝐿(5) = 2

 𝐿(6) = 1

 𝐿(7) =
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 What is the length of the longest increasing subsequence?

 max
1≤𝑗≤𝑛

𝐿(𝑗)



Dynamic Programming: Examples
Length-LIS(𝐴, 𝑛)

- if (𝑛 = 1) return(1)

- 𝑚𝑎𝑥 ← 1

- for 𝑗 = (𝑛 − 1) to 1

- if (𝐴[𝑗] ≤ 𝐴[𝑛])

- 𝑠 ←Length-LIS(𝐴, 𝑗)

- if (max < 𝑠 + 1) 𝑚𝑎𝑥 ← 𝑠 + 1

- return(max)

 What is the running time for the above algorithm?

 𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(𝑛 − 2) + … + 𝑇(1)
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𝑛 − 1

𝑛

𝑛 − 2 1𝑛 − 3

𝑛 − 2 𝑛 − 3 𝑛 − 4

 Lot of nodes are repeated.
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LIS(𝐴)

- for 𝑖 = 1 to 𝑛

- 𝑚𝑎𝑥 ← 1

- 𝑃[𝑖] = 𝑖

- for 𝑗 = 1 to (𝑖 − 1)

- if (𝐴[𝑗] ≤ 𝐴[𝑖])

- if (𝑚𝑎𝑥 < 𝐿[𝑗] + 1)

- m𝑎𝑥 ← 𝐿[𝑗] + 1

- 𝑃[𝑖] = 𝑗

- 𝐿 𝑖 ← 𝑚𝑎𝑥

- //𝑃 stores the longest increasing subsequence  
output this

 But the problem was to find the longest increasing 
subsequence and not the length!

 For each number, we just note down the index of the number 
preceding this number in a longest increasing subsequence.
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LIS(𝐴)

- for 𝑖 = 1 to 𝑛

- 𝑚𝑎𝑥 ← 1

- 𝑃[𝑖] = 𝑖

- for 𝑗 = 1 to (𝑖 − 1)

- if (𝐴[𝑗] ≤ 𝐴[𝑖])

- if (𝑚𝑎𝑥 < 𝐿[𝑗] + 1)

- m𝑎𝑥 ← 𝐿[𝑗] + 1

- 𝑃[𝑖] = 𝑗

- 𝐿[𝑖] = 𝑚𝑎𝑥

- //𝑃 stores the longest increasing subsequence  
output this
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1 1 2 2 2 1 3 3 4

1 2 1 2 2 6 3 4 7

L

P

1 2 3 4 5 6 7 8 9

7 2 8 6 3 1 9 7 10A

 So one of the longest increasing subsequence is (7, 8, 9, 10).
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Longest Common Subsequence



 Problem(longest common subsequence): Let 𝑆 and 𝑇 be strings of 
characters. 𝑆 is of length 𝑛 and 𝑇 is of length 𝑚. Find the longest 
common subsequence. This is the longest sequence of characters that 
appear in both 𝑆 and 𝑇. The characters are not necessarily 
contiguous.

 Example: 𝑆 = XYXZPQ,   𝑇 = YXQYXP.
 The longest common subsequence is XYXP

 𝑆=XYXZPQ, 𝑇= YXQYXP

Dynamic Programming: Examples



End

Problems to think about: 

1. We saw an example where there were exponentially large 

number of increasing subsequences such that the length of these 

sequences was equal to the length of the longest increasing 

subsequence. Can you construct a similar example for the 

longest common subsequence problem?


