CSL356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Divide and Conquer: Recurrence Relations

Master Theorem

Divide and Conquer: Recurrence Relation

- Master Theorem: Let

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+c \cdot n^{k} \quad \text { and } \quad T(1)=c
$$

Then,
$T(n)=$

$$
\text { if } a<b^{k}
$$

$$
\begin{array}{ll}
=\square & \text { if } a=b^{k} \\
=\square & \text { if } a>b^{k}
\end{array}
$$

Divide and Conquer: Recurrence Relation

$$
\begin{aligned}
& c \cdot n^{k} \\
& c \cdot a \cdot(n / b)^{k} \\
& c \cdot n^{k} \cdot\left(a / b^{k}\right)^{2} \\
& c \cdot n^{k} \cdot\left(a / b^{k}\right)^{i}
\end{aligned}
$$

$$
c \cdot n^{k} \cdot\left(1+r+r^{2}+\cdots+r^{\log (n) / \log (b)}\right), r=a / b^{k}
$$

Divide and Conquer: Recurrence Relation

- Master Theorem: Let

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+c \cdot n^{k} \quad \text { and } \quad T(1)=c
$$

Then,

$$
\begin{aligned}
T(n) & =O\left(n^{k}\right) & & \text { if } a<b^{k} \\
& =O\left(n^{k} \cdot \log _{b}(n)\right) & & \text { if } a=b^{k} \\
& =O\left(n^{\log (a) / \log (b)}\right) & & \text { if } a>b^{k}
\end{aligned}
$$

Problem Session

Problem Session

- Bookshelf Problem: There is a bookshelf with multiple shelves and n books that are to be places in a fixed order in the bookshelf. Design an algorithm to place the books such that the sum of leftover space in each of the shelves is minimized.

Problem Session

- Valid Pair Set: Given n integers x_{1}, \ldots, x_{n} and an integer P, a set $S=\left\{(i, j): i<j\right.$ and $\left.x_{i}+x_{j} \geq P\right\}$ is said to be a valid pair set if each index is present in at most one pair in S. Design an algorithm that outputs a valid pair set with maximum cardinality.

Problem Session

- Hidden Surface Removal: You are given n non-verticle lines on a plane. A line is said to be "visible" if there is some x coordinate at which this line is the uppermost line. Give an algorithm that outputs all the "visible" lines.

End

