CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal

CSE, IIT Delhi

<u>Median Finding</u>: Finding the k^{th} smallest number in an unsorted array.

- <u>Problem(Median Finding)</u>: Given an array A of unsorted numbers and an integer k. Give an algorithm that finds the k^{th} smallest number in the array. Assume A contains distinct numbers.
- Divide and Conquer:
 - Pick an number p as pivot. Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p).

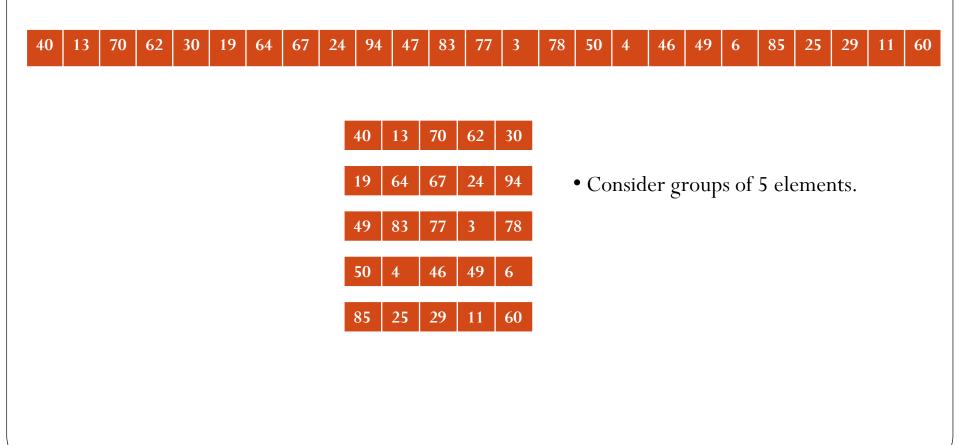
• If
$$|A_L| = k - 1$$
, then output p .

- If $|A_L| > k 1$, then recursively find the k^{th} smallest number in A_L
- If $|A_L| < k 1$, then recursively find the $(k |A_L| 1)^{th}$ smallest number in A_R .

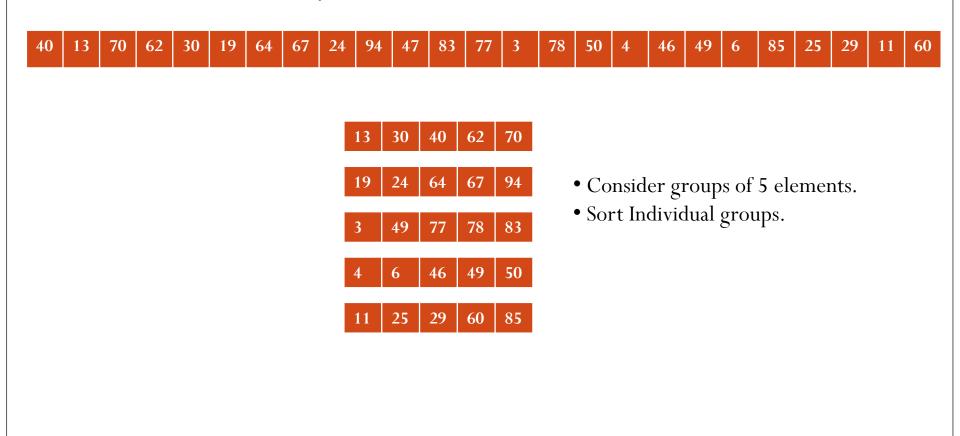
- <u>Problem(Median Finding)</u>: Given an array A of unsorted numbers and an integer k. Give an algorithm that finds the k^{th} smallest number in the array. Assume A contains distinct numbers.
- Divide and Conquer:
 - Pick an number p as pivot. Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p).
 - If $|A_L| = k 1$, then output p.
 - If $|A_L| > k 1$, then recursively find the k^{th} smallest number in A_L
 - If $|A_L| < k 1$, then recursively find the $(k |A_L| 1)^{th}$ smallest number in A_R .
- What is the running time of this algorithm?

- <u>Problem(Median Finding)</u>: Given an array A of unsorted numbers and an integer k. Give an algorithm that finds the k^{th} smallest number in the array. Assume A contains distinct numbers.
- Divide and Conquer:
 - Pick an number p as pivot. Partition the numbers in A into A_L (all numbers < p) and A_R (all numbers > p).
 - If $|A_L| = k 1$, then output p.
 - If $|A_L| > k 1$, then recursively find the k^{th} smallest number in A_L
 - If $|A_L| < k 1$, then recursively find the $(k |A_L| 1)^{th}$ smallest number in A_R .
- What is the running time of this algorithm?
 - If we pick a bad pivot each time, then the running time can be as bad as $O(n^2)$.

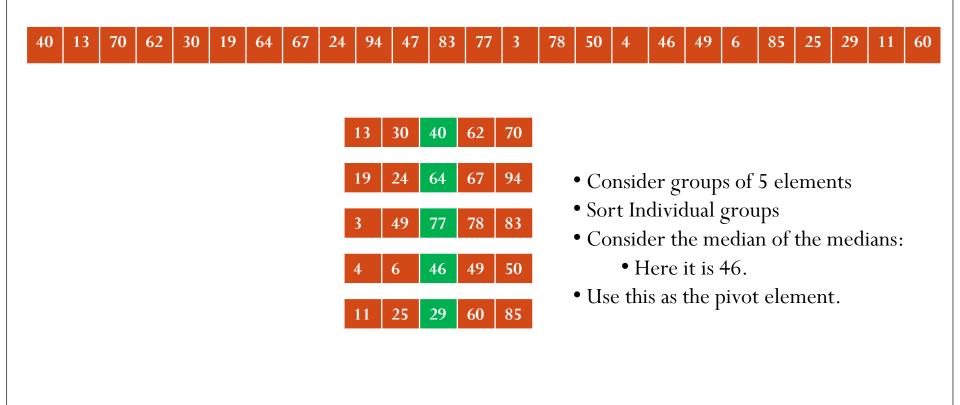
- How do we pick a good pivot number?
 - Randomly: We will look at this a bit later.
 - Deterministically: ?



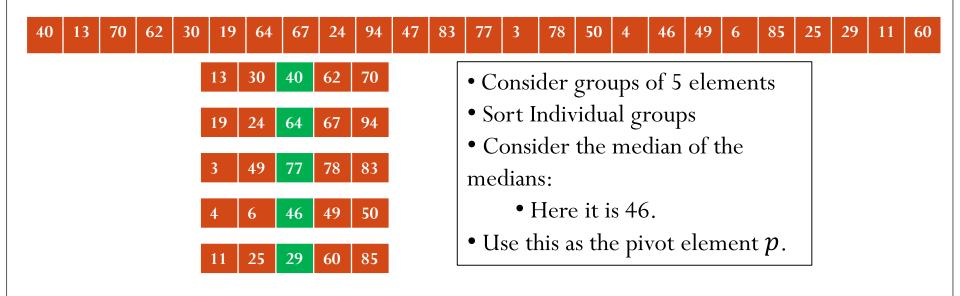
- How do we pick a good pivot number?
 - Randomly: We will look at this a bit later.
 - Deterministically: ?



- How do we pick a good pivot number?
 - Randomly: We will look at this a bit later.
 - Deterministically: ?

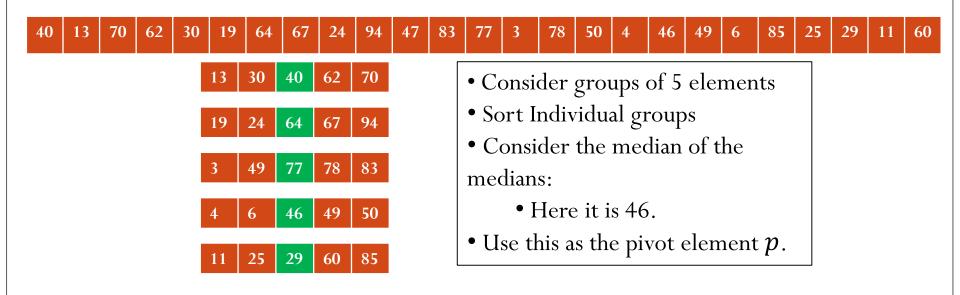


- How do we pick a good pivot number?
 - Randomly: We will look at this a bit later.
 - Deterministically: ?



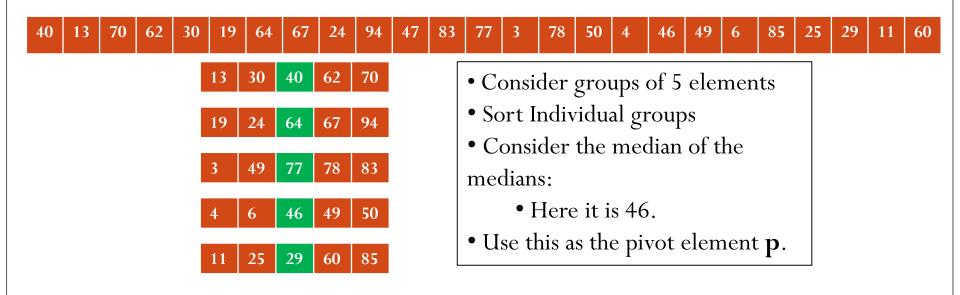
• How many elements in *A* are larger than *p*?

- How do we pick a good pivot number?
 - Randomly: We will look at this a bit later.
 - Deterministically: ?



- How many elements in *A* are larger than *p*?
 - <u>Claim</u>: There are at least (3n/10 6) numbers in *A* that are larger than *p*.

- How do we pick a good pivot number?
 - Randomly: We will look at this a bit later.
 - Deterministically: ?



- How many elements in *A* are smaller than *p*?
 - <u>Claim</u>: There are at least (3n/10 6) numbers in A that are smaller than p.

Find-kth-smallest(A, k)

- ... / / Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median numbers from each group.
- $p \leftarrow \text{Find-kth-smallest}(B, \text{floor}(|B|/2))$
- Partition the array A into A_L and A_R using p as the pivot.
- If $(|A_L| = k 1)$ then output(p)
- If $(|A_L| > k 1)$ then output(Find-kth-smallest(A_L , k))
- If $(|A_L| < k 1)$ then output(Find-kth-smallest($A_R, k |A_L| 1$))
- <u>Running time</u>:?

Find-kth-smallest(A, k)

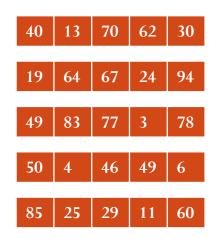
- ... / / Base cases
- Consider groups of 5 numbers, sort each group and create another array B containing the median numbers from each group.
- $p \leftarrow \text{Find-kth-smallest}(B, \text{floor}(|B|/2))$
- Partition the array A into A_L and A_R using p as the pivot.
- If $(|A_L| = k 1)$ then output(p)
- If $(|A_L| > k 1)$ then output(Find-kth-smallest(A_L , k))
- If $(|A_L| < k 1)$ then output(Find-kth-smallest($A_R, k |A_L| 1$))

• <u>Running time</u>:

- T(n) = T([n/5]) + T(7n/10 + 6) + O(n)
- T(n) = ?

• Suppose we want to find the 12th smallest element in the array?

• Suppose we want to find the 12th smallest element in the array?



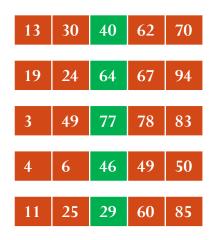
• Consider groups of 5 elements.

• Suppose we want to find the 12th smallest element in the array?

13	30	40	62	70
19	24	64	67	94
3	49	77	78	83
4	6	46	49	50
11	25	29	60	85

- Consider groups of 5 elements.
- Sort individual groups

• Suppose we want to find the 12th smallest element in the array?



- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.

• Suppose we want to find the 12th smallest element in the array?

- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.

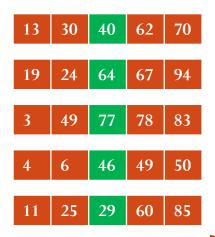
29

46

77

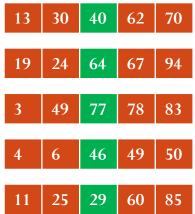
64

• Suppose we want to find the 12th smallest element in the array?



- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.

• Suppose we want to find the 12th smallest element in the array?



- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.

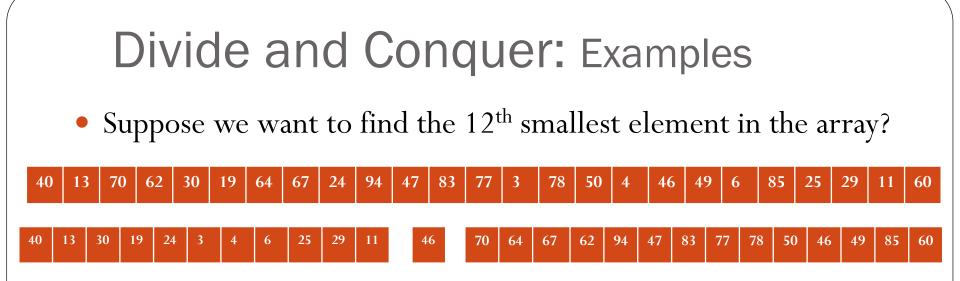
29

40

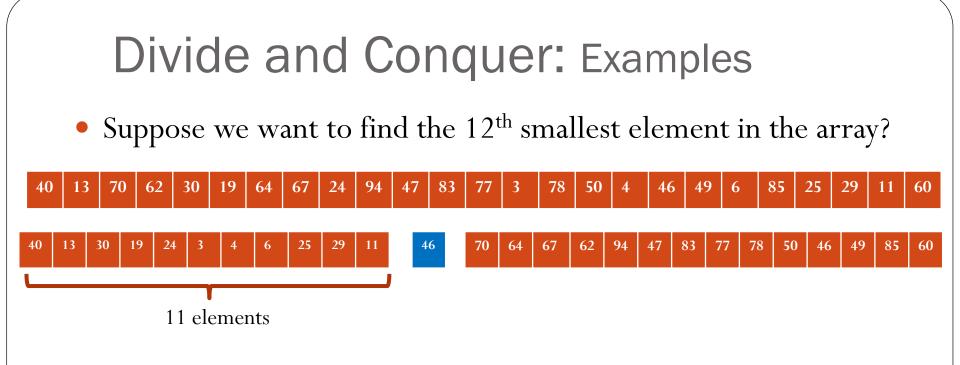
46

64

77



- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.
- Partition using the pivot as 46.



- Consider groups of 5 elements.
- Sort individual groups.
- Consider medians of each group.
- Make a recursive call to find median element of medians.
- Partition using the pivot as 46.

Fast Fourier Transform (FFT)

- <u>Problem</u>: Given two polynomials $A(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_{n-1} \cdot x^{n-1},$ and $B(x) = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \dots + b_{n-1} \cdot x^{n-1}$ multiply them.
- We have to obtain the polynomial $C(x) = A(x) \cdot B(x)$ $C(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + \dots + c_{2n-2} * x^{2n-2}$
- What is c_i in terms of coefficients of A and B?

- <u>Problem</u>: Given two polynomials $A(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_{n-1} \cdot x^{n-1},$ and $B(x) = b_0 + b_1 \cdot x + b_2 \cdot x^2 + \dots + b_{n-1} \cdot x^{n-1}$ multiply them.
- We have to obtain the polynomial $C(x) = A(x) \cdot B(x)$ $C(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + \dots + c_{2n-2} * x^{2n-2}$
- What is C_i in terms of coefficients of A and B?
 - $c_i = a_i \cdot b_0 + a_{i-1} \cdot b_1 + a_{i-2} \cdot b_2 + \dots + a_0 \cdot b_i$
- The vector (c_0, \ldots, c_{2n-2}) is called the *convolution* of vectors (a_0, \ldots, a_{n-1}) and (b_0, \ldots, b_{n-1}) .

SimpleMultiply(
$$(a_0, ..., a_{n-1}), (b_0, ..., b_{n-1})$$
)
- For $i = 0$ to $2n - 2$
- For $j = 0$ to i
- $c_i = c_i + a_j \cdot b_{i-j}$
- return($(c_0, ..., c_{2n-2})$)

• What is the running time of the simple algorithm?

• $O(n^2)$

• Is there another way to compute the polynomial C(x)?

SimpleMultiply(
$$(a_0, ..., a_{n-1}), (b_0, ..., b_{n-1})$$
)
- For $i = 0$ to $2n - 2$
- For $j = 0$ to i
- $c_i = c_i + a_j \cdot b_{i-j}$
- return($(c_0, ..., c_{2n-2})$)

What is the running time of the simple algorithm?
O(n²)

• Is there another way to compute the polynomial C(x)?

- Compute $A(s_1), A(s_2), ..., A(s_{2n})$.
- Compute $B(s_1), B(s_2), ..., B(s_{2n})$.
- Compute

•
$$C(s_1) = A(s_1) \cdot B(s_1),$$

•
$$C(s_{2n}) = A(s_{2n}) \cdot B(s_{2n})$$

- Is there another way to compute the polynomial C(x)?
 - Compute $A(s_1), A(s_2), ..., A(s_{2n})$.
 - Compute $B(s_1), B(s_2), ..., B(s_{2n})$.
 - Compute
 - $C(s_1) = A(s_1) \cdot B(s_1)$,
 - • •
 - $C(s_{2n}) = A(s_{2n}) \cdot B(s_{2n}).$

• Interpolate to obtain the polynomial C(x).

• How fast can you compute A(s) for a given value of s?

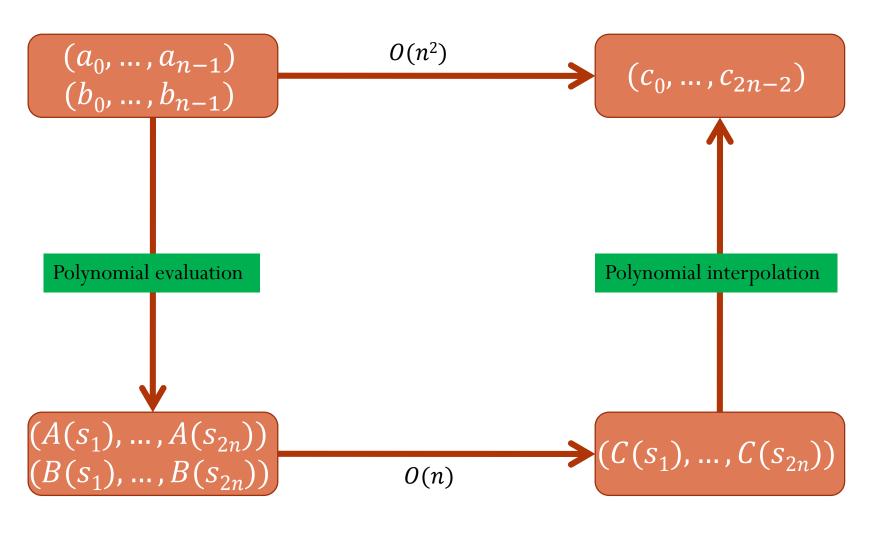
- Is there another way to compute the polynomial C(x)?
 - Compute $A(s_1), A(s_2), ..., A(s_{2n})$.
 - Compute $B(s_1), B(s_2), ..., B(s_{2n})$.
 - Compute
 - $C(s_1) = A(s_1) \cdot B(s_1)$,

• ...

• $C(s_{2n}) = A(s_{2n}) \cdot B(s_{2n}).$

• *Interpolate* to obtain the polynomial C(x).

- How fast can you compute A(s) for a given value of s?
 - O(n) arithmetic operations using Horner's rule.
 - $A(s) = a_0 + s \cdot (a_1 + s \cdot (a_2 + \dots + s \cdot (a_{n-2} + s \cdot (a_{n-1})) \dots))$



End