CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal
CSE, IIT Delhi

Techniques

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows

Divide and Conquer

You have already looked at many divide and conquer algorithms:

- Binary Search
- Merge Sort
- Quick Sort
- Multiplying two n bit numbers in $O\left(n^{\log _{2}(3)}\right)$ time.

Divide and Conquer: Introduction

- Main Idea:
- Divide: Divide the input into smaller parts.
- Conquer: Solve the smaller problems and combine their solution.
- Example: Merge Sort
- Divide the input array A into two equal parts A_{1} and A_{2}.
- Recursively sort the array A_{1} and A_{2}.
- Merge the arrays A_{1} and A_{2}.
- Running time:
- $T(n)=2 \cdot T(n / 2)+O(n)$
- $T(1)=O(1)$
- Solving the above recurrence relation, we get $T(n)=O(n \log n)$.

Divide and Conquer: Examples

Closest pair of points on a plane

Divide and Conquer: Examples

- Problem: You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Give an algorithm that outputs the closest pair of points.

Divide and Conquer: Examples

- Problem: You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Give an algorithm that outputs the closest pair of points.
- Brute-force algorithm: Consider all pairs and pick closest.
- Running Time:

Divide and Conquer: Examples

- Problem: You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Give an algorithm that outputs the closest pair of points.
- Brute-force algorithm: Consider all pairs and pick closest.
- Running Time: $O\left(n^{2}\right)$

Divide and Conquer: Examples

- Problem: You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
- Based on X-axis. Consider left-half points P_{L} and righthalf points P_{R}.

Divide and Conquer: Examples

- Problem: You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
- Based on X-axis. Consider left-half points P_{L} and righthalf points P_{R}.
- Recursively find the closest pair of points in $P_{L},\left(i_{L}, j_{L}\right)$ and $P_{R},\left(i_{R}, j_{R}\right)$.

Divide and Conquer: Examples

- Problem: You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
- Based on X-axis. Consider left-half points P_{L} and righthalf points P_{R}.
- Recursively find the closest pair of points in $P_{L},\left(i_{L}, j_{L}\right)$ and $P_{R},\left(i_{R}, j_{R}\right)$.
- Consider all pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R}.

Divide and Conquer: Examples

- Problem: You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
- Based on X-axis. Consider left-half points P_{L} and righthalf points P_{R}.
- Recursively find the closest pair of points in $P_{L},\left(i_{L}, j_{L}\right)$ and $P_{R},\left(i_{R}, j_{R}\right)$.
- Consider all pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R}.
- Find the pair (p, q) that is closest. Pick the closest pair among $\left(i_{L}, j_{L}\right),\left(i_{R}, j_{R}\right)$ and (p, q).

Divide and Conquer: Examples

- Problem: You are given n points on a two dimensional plane. Each point i is defined by a pair $(x(i), y(i))$ of coordinates. Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
- Based on X-axis. Consider left-half points P_{L} and right-half points P_{R}.
- Recursively find the closest pair of points in $P_{L},\left(i_{L}, j_{L}\right)$ and $P_{R},\left(i_{R}, j_{R}\right)$.
- Consider all pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R}.
- Find the pair (p, q) that is closest. Pick the closest pair among $\left(i_{L}, j_{L}\right),\left(i_{R}, j_{R}\right)$ and (p, q).
- Running time?

Divide and Conquer: Examples

- Let $x=x^{*}$ be a line along the Y-axis dividing the points into P_{L} and P_{R}
- Let d be the distance between the closest pair of points in P_{L} and P_{R}.
- Claim 1: For any pair of points (p, q) such that

$$
x(p)<x^{*}-d \quad \text { and } \quad x(q) \geq x^{*}
$$

the distance between p and q is at least d.

- Claim 2: For any pair of points (p, q) such that

$$
x(p) \leq x^{*} \quad \text { and } \quad x(q)>x^{*}+d
$$

the distance between p and q is at least d.

Divide and Conquer: Examples

- Let $x=x^{*}$ be a line along the Y-axis dividing the points into P_{L} and P_{R}
- Let d be the distance between the closest pair of points in P_{L} and P_{R}.
- Claim 1: For any pair of points (p, q) such that

$$
x(p)<x^{*}-d \quad \text { and } \quad x(q) \geq x^{*}
$$

the distance between p and q is at least d.

- Claim 2: For any pair of points (p, q) such that

$$
x(p) \leq x^{*} \quad \text { and } \quad x(q)>x^{*}+d
$$

the distance between p and q is at least d.

- This means that for pairs of points across the line, we can throw any point in P_{L} that has small X-coordinate and any point in P_{R} that has large X-coordinate.
- Does this claim help in improving the running time?

Divide and Conquer: Examples

- How many points does each "box" contain?

Divide and Conquer: Examples

- Claim 3: Let P be all the points that have X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d. There cannot be more than 10 points between p and q in the sorted list S.

Note that in Claim 3, P_{L} denotes the points in P that are to the left of the $x=x^{*}$ line and P_{R} denotes the points in P that are to the right of $x=x^{*}$.

Divide and Conquer: Examples

- Claim 3: Let P be all the points that have X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d. There cannot be more than 10 points between p and q in the sorted list S.

- Proof idea: Consider a pair (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d. Let $y(p) \leq y(q)(y(q) \leq y(p)$ will be symmetric).

Divide and Conquer: Examples

- Claim 3: Let P be all the points that have X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d. There cannot be more than 10 points between p and q in the sorted list S.

- Proof idea: Consider a pair (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d. Let $y(p) \leq y(q)(y(q) \leq y(p)$ will be symmetric).
q can only belong to one of the shaded boxes

Divide and Conquer: Examples

- Claim 3: Let P be all the points that have X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d. There cannot be more than 10 points between p and q in the sorted list S.

- Proof idea: Consider a pair (p, q) such that p belongs to P_{L} and q belongs to P_{R} and distance between p and q is at most d. Let $y(p) \leq y(q)(y(q) \leq y(p)$ will be symmetric).
q can only belong to one of the shaded boxes

Divide and Conquer: Examples

ClosestPair(P)

- ... / / Base cases
- Sort the points in increasing order of X-coordinates. Pick the median point $\left(x^{*}, y\right)$
- Partition P into P_{L} (all points p with $x(p)<x^{*}$) and P_{R}
(all points p with $x(p) \geq x^{*}$)
- $\left(p_{1}, q_{1}\right) \leftarrow \operatorname{ClosestPair}\left(P_{L}\right)$
- $\left(p_{2}, q_{2}\right) \leftarrow$ ClosestPair $\left(P_{R}\right)$
- Let (p, q) denote the pair with smaller distance and d be this distance
- Let S be the sorted list of point with X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$
- For $i=1$ to $|S|$
- For $j=1$ to 11
- If the distance between points $S[i]$ and $S[i+j]$ is smaller than d, then set (p, q) to be $(S[i], S[i+j])$ and d to be distance between $S[i]$ and $S[i+j]$
$-\operatorname{Output}(p, q)$
- Running time:

Divide and Conquer: Examples

ClosestPair (P)

- ... / / Base cases
- Sort the points in increasing order of X-coordinates. Pick the median point $\left(x^{*}, y\right)$
- Partition P into P_{L} (all points p with $x(p)<x^{*}$) and P_{R}
(all points p with $x(p) \geq x^{*}$)
- $\left(p_{1}, q_{1}\right) \leftarrow \operatorname{ClosestPair}\left(P_{L}\right)$
- $\left(p_{2}, q_{2}\right) \leftarrow$ ClosestPair $\left(P_{R}\right)$
- Let (p, q) denote the pair with smaller distance and d be this distance
- Let S be the sorted list of point with X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$
- For $i=1$ to $|S|$
- For $j=1$ to 11
- If the distance between points $S[i]$ and $S[i+j]$ is smaller than d, then set (p, q) to be $(S[i], S[i+j])$ and d to be distance between $S[i]$ and $S[i+j]$
$-\operatorname{Output}(p, q)$
- Running time:
- $T(n)=2 * T(n / 2)+O(n \log n), T(1)=O(1), T(2)=O(1)$
- $T(n)=O\left(n(\log n)^{2}\right)$

Divide and Conquer: Examples

ClosestPair (P)

- ... / / Base cases
- Sort the points in increasing order of X-coordinates. Pick the median point $\left(x^{*}, y\right)$
- Partition P into P_{L} (all points p with $x(p)<x^{*}$) and P_{R} (all points p with $x(p) \geq x^{*}$)
- $\left(p_{1}, q_{1}\right) \leftarrow$ ClosestPair $\left(P_{L}\right)$
- $\left(p_{2}, q_{2}\right) \leftarrow$ ClosestPair $\left(P_{R}\right)$
- Let (p, q) denote the pair with smaller distance and d be this distance
- Let S be the sorted list of point with X-coordinate between $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$
- For $i=1$ to $|S|$
- For $j=1$ to 11
- If the distance between points $S[i]$ and $S[i+j]$ is smaller than d, then set (p, q) to be $(S[i], S[i+j])$ and d to be distance between $S[i]$ and $S[i+j]$
$-\operatorname{Output}(p, q)$
- Can we take the sorting out of the recursion?
- What is the running time we get in doing so?
- We can get $O(n \log n)$.

Divide and Conquer: Examples

- Throw away points beyond $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$

Divide and Conquer: Examples

- Throw away points beyond $\left(x^{*}-d\right)$ and $\left(x^{*}+d\right)$

Divide and Conquer: Examples

- Consider the list of points sorted based onY-coordinate.

Divide and Conquer: Examples

- Consider the list of points sorted based onY-coordinate.
- Check the distance of a point in the list with the next 11 elements.

End

