CSL 356: Analysis and Design of Algorithms

Ragesh Jaiswal

CSE, IIT Delhi

Techniques

- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flows

Divide and Conquer

You have already looked at many divide and conquer algorithms:

- Binary Search
- Merge Sort
- Quick Sort
- Multiplying two n bit numbers in $O(n^{\log_2(3)})$ time.

Divide and Conquer: Introduction

- Main Idea:
 - <u>Divide</u>: Divide the input into smaller parts.
 - <u>Conquer</u>: Solve the smaller problems and combine their solution.
- Example: Merge Sort
 - Divide the input array A into two equal parts A_1 and A_2 .
 - Recursively sort the array A_1 and A_2 .
 - Merge the arrays A_1 and A_2 .
 - Running time:
 - $T(n) = 2 \cdot T(n/2) + O(n)$
 - T(1) = O(1)
 - Solving the above recurrence relation, we get $T(n) = O(n \log n)$.

Closest pair of points on a plane

• <u>Problem</u>: You are given n points on a two dimensional plane. Each point i is defined by a pair (x(i), y(i)) of coordinates. Give an algorithm that outputs the closest pair of points.

- <u>Problem</u>: You are given n points on a two dimensional plane. Each point i is defined by a pair (x(i), y(i)) of coordinates. Give an algorithm that outputs the closest pair of points.
- <u>Brute-force algorithm</u>: Consider all pairs and pick closest.
 - Running Time:

- <u>Problem</u>: You are given n points on a two dimensional plane. Each point i is defined by a pair (x(i), y(i)) of coordinates. Give an algorithm that outputs the closest pair of points.
- <u>Brute-force algorithm</u>: Consider all pairs and pick closest.
 - Running Time: $O(n^2)$

- <u>Problem</u>: You are given *n* points on a two dimensional plane.
 Each point *i* is defined by a pair (*x*(*i*), *y*(*i*)) of coordinates.
 Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
 - Based on X-axis. Consider left-half points P_L and right-half points P_R .

- <u>Problem</u>: You are given n points on a two dimensional plane. Each point i is defined by a pair (x(i), y(i)) of coordinates. Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
 - Based on X-axis. Consider left-half points P_L and right-half points P_R .
 - Recursively find the closest pair of points in P_L , (i_L, j_L) and P_R , (i_R, j_R) .

- <u>Problem</u>: You are given n points on a two dimensional plane. Each point i is defined by a pair (x(i), y(i)) of coordinates. Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
 - Based on X-axis. Consider left-half points P_L and right-half points P_R .
 - Recursively find the closest pair of points in P_L , (i_L, j_L) and P_R , (i_R, j_R) .
 - Consider all pair of points (p, q) such that p belongs to P_L and q belongs to P_R .

- <u>Problem</u>: You are given *n* points on a two dimensional plane.
 Each point *i* is defined by a pair (*x*(*i*), *y*(*i*)) of coordinates.
 Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
 - Based on X-axis. Consider left-half points P_L and right-half points P_R .
 - Recursively find the closest pair of points in P_L , (i_L, j_L) and P_R , (i_R, j_R) .
 - Consider all pair of points (p, q) such that p belongs to P_L and q belongs to P_R .
 - Find the pair (p, q) that is closest. Pick the closest pair among (i_L, j_L) , (i_R, j_R) and (p, q).

- <u>Problem</u>: You are given n points on a two dimensional plane. Each point i is defined by a pair (x(i), y(i)) of coordinates. Give an algorithm that outputs the closest pair of points.
- Divide and Conquer:
 - Based on X-axis. Consider left-half points P_L and right-half points P_R .
 - Recursively find the closest pair of points in P_L , (i_L, j_L) and P_R , (i_R, j_R) .
 - Consider all pair of points (p, q) such that p belongs to P_L and q belongs to P_R .
 - Find the pair (p,q) that is closest. Pick the closest pair among (i_L, j_L) , (i_R, j_R) and (p,q).
- Running time?

- Let $x = x^*$ be a line along the Y-axis dividing the points into P_L and P_R
- Let d be the distance between the closest pair of points in P_L and P_R .
- <u>Claim 1</u>: For any pair of points (p,q) such that $x(p) < x^* - d$ and $x(q) \ge x^*$ the distance between p and q is at least d.
- <u>Claim 2</u>: For any pair of points (p,q) such that $x(p) \leq x^*$ and $x(q) > x^* + d$ the distance between p and q is at least d.

- Let $x = x^*$ be a line along the *Y*-axis dividing the points into P_L and P_R
- Let d be the distance between the closest pair of points in P_L and P_R .
- <u>Claim 1</u>: For any pair of points (p,q) such that $x(p) < x^* - d$ and $x(q) \ge x^*$, the distance between p and q is at least d.
- <u>Claim 2</u>: For any pair of points (p,q) such that $x(p) \leq x^*$ and $x(q) > x^* + d$, the distance between p and q is at least d.
- This means that for pairs of points across the line, we can throw any point in P_L that has small X-coordinate and any point in P_R that has large X-coordinate.
- Does this claim help in improving the running time?

• How many points does each "box" contain?

• <u>Claim 3</u>: Let P be all the points that have X-coordinate between $(x^* - d)$ and $(x^* + d)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d. There cannot be more than 10 points between p and q in the sorted list S.

• <u>Claim 3</u>: Let *P* be all the points that have *X*-coordinate between $(x^* - d)$ and $(x^* + d)$. Let *S* be the sorted list of points in *P* sorted in increasing order of their *Y*-coordinates. Consider any pair of points (p, q) such that *p* belongs to P_L and *q* belongs to P_R and distance between *p* and *q* is at most *d*. There cannot be more than 10 points between *p* and *q* in the sorted list *S*.

• <u>Proof idea</u>: Consider a pair (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d. Let $y(p) \leq y(q) (y(q) \leq y(p))$ will be symmetric).

• <u>Claim 3</u>: Let P be all the points that have X-coordinate between $(x^* - d)$ and $(x^* + d)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d. There cannot be more than 10 points between p and q in the sorted list S.

• <u>Proof idea</u>: Consider a pair (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d. Let $y(p) \leq y(q) (y(q) \leq y(p))$ will be symmetric).

 \boldsymbol{q} can only belong to one of the shaded boxes

• <u>Claim 3</u>: Let P be all the points that have X-coordinate between $(x^* - d)$ and $(x^* + d)$. Let S be the sorted list of points in P sorted in increasing order of their Y-coordinates. Consider any pair of points (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d. There cannot be more than 10 points between p and q in the sorted list S.

• <u>Proof idea</u>: Consider a pair (p, q) such that p belongs to P_L and q belongs to P_R and distance between p and q is at most d. Let $y(p) \leq y(q) (y(q) \leq y(p))$ will be symmetric).

 \boldsymbol{q} can only belong to one of the shaded boxes

ClosestPair(P)

- ... / / Base cases
- Sort the points in increasing order of *X*-coordinates. Pick the median point (x^*, y)
- Partition *P* into *P*_L (all points *p* with $x(p) < x^*$) and *P*_R (all points *p* with $x(p) \ge x^*$)
- $(p_1, q_1) \leftarrow \text{ClosestPair}(P_L)$
- $(p_2, q_2) \leftarrow \text{ClosestPair}(P_R)$
- Let (p, q) denote the pair with smaller distance and d be this distance
- Let S be the sorted list of point with X-coordinate between $(x^* d)$ and $(x^* + d)$

- For
$$i = 1 to |S|$$

- For
$$j = 1 to 11$$

- If the distance between points S[i] and S[i + j] is smaller than d, then set (p,q) to be (S[i], S[i + j]) and d to be distance between S[i] and S[i + j]

- $\operatorname{Output}(p,q)$

Running time:

ClosestPair(P)

- ... / / Base cases
- Sort the points in increasing order of *X*-coordinates. Pick the median point (x^*, y)
- Partition *P* into *P*_L (all points *p* with $x(p) < x^*$) and *P*_R (all points *p* with $x(p) \ge x^*$)
- $(p_1, q_1) \leftarrow \text{ClosestPair}(P_L)$
- $(p_2, q_2) \leftarrow \text{ClosestPair}(P_R)$
- Let (p, q) denote the pair with smaller distance and d be this distance
- Let S be the sorted list of point with X-coordinate between $(x^* d)$ and $(x^* + d)$

- For
$$i = 1 to |S|$$

- For j = 1 to 11

- If the distance between points S[i] and S[i + j] is smaller than d, then set (p,q) to be (S[i], S[i + j]) and d to be distance between S[i] and S[i + j]

- Output(*p*, *q*)

• <u>Running time</u>:

- $T(n) = 2 * T(n/2) + O(n \log n), T(1) = O(1), T(2) = O(1)$
- $T(n) = O(n (\log n)^2)$

ClosestPair(P)

- ... / / Base cases
- Sort the points in increasing order of X-coordinates. Pick the median point (x^*, y)
- Partition P into P_L (all points p with $x(p) < x^*$) and P_R
 - (all points p with $x(p) \ge x^*$)
- $(p_1, q_1) \leftarrow \text{ClosestPair}(P_L)$
- $(p_2, q_2) \leftarrow \text{ClosestPair}(P_R)$
- Let (p, q) denote the pair with smaller distance and d be this distance
- Let *S* be the sorted list of point with *X*-coordinate between $(x^* d)$ and $(x^* + d)$
- For i = 1 to |S|
 - For j = 1 to 11
 - If the distance between points S[i] and S[i + j] is smaller than d, then set (p,q) to be (S[i], S[i + j]) and d to be distance between S[i] and S[i + j]

- Output(*p*, *q*)

- Can we take the sorting out of the recursion?
- What is the running time we get in doing so?
 - We can get $O(n \log n)$.

Divide and Conquer: Examples d $x = x^*$

• Throw away points beyond (x^*-d) and (x^*+d)

• Throw away points beyond (x^*-d) and (x^*+d)

• Consider the list of points sorted based on Y-coordinate.

- Consider the list of points sorted based on Y-coordinate.
- Check the distance of a point in the list with the next 11 elements.

End