
Ragesh Jaiswal

CSE, IIT Delhi

CSL 356: Analysis and Design of

Algorithms

Greedy Algorithms: Huffman

Coding

Greedy Algorithms: Huffman Coding

 A wants to send an email to B but wants to minimize the

amount of communication (number of bits communicated).

 How do you encode an email into bits?

 ASCII: (8 bits per character)

 Is this the best way to encode the email given that the goal is to minimize

the communication?

A B

Greedy Algorithms: Huffman Coding

 A wants to send an email to B but wants to minimize the

amount of communication (number of bits communicated).

 How do you encode an email into bits?

 ASCII: (8 bits per character)

 Is this the best way to encode the email given that the goal is to minimize

the communication?

 Different alphabets have different frequency of occurrence in a standard

English document.

A B

Greedy Algorithms: Huffman Coding
 A wants to send an email to B but wants to minimize the amount of

communication (number of bits communicated).

 How do you encode an email into bits?
 ASCII: (8 bits per character)

 Is this the best way to encode the email given that the goal is to minimize the
communication?

 Different alphabets have different frequency of occurrence in a standard English
document.

Source: wikipedia

Greedy Algorithms: Huffman Coding

 The encoding of “e” should be shorter than the encoding of

“x”.

 In fact Morse code was designed with this in mind.

Source: wikipedia

Source: wikipedia

Greedy Algorithms: Huffman Coding

 Suppose you receive the following Morse code from your

friend:

 What is the message?

Source: wikipedia

Greedy Algorithms: Huffman Coding

 Prefix-free encoding: An encoding 𝑓 is called prefix-free if

for any pair of alphabets (𝑎1, 𝑎2), 𝑓(𝑎1) is not a prefix of

𝑓(𝑎2).

 Morse code is clearly not prefix-free.

 Consider a binary tree with 26 leaves and associate each

alphabet with a leaf in this tree.

 Binary Tree: A rooted tree where each non-leaf node has at most

two children.

 Label an edge 0 if this edge connects the parent to its left

child and 1 otherwise.

 𝑓(𝑥) = The label of edges connecting the root with 𝑥.

Greedy Algorithms: Huffman Coding

 Consider a binary tree with 26 leaves and associate each

alphabet with a leaf in this tree.

 Label an edge 0 if this edge connects the parent to its left

child and 1 otherwise.

 𝑓(𝑥) = The label of edges connecting the root with 𝑥.

0 1

0 1

0

0 1

1 1

a

b c d

Simple example with 4 alphabets

• 𝑓(𝑎) = 01

• 𝑓(𝑏) = 000

• 𝑓(𝑐) = 101

• 𝑓(𝑑) = 111

• Is 𝑓 prefix-free?

Greedy Algorithms: Huffman Coding

 Suppose you are given a prefix-free encoding 𝑔.

 Can you construct a binary tree with 26 leaves, associate each
leaf with an alphabet, and label the edges as defined
previously such that the for any alphabet, the label of edges
connecting the root with 𝑥 = 𝑔(𝑥)?

0 1

0

0 1

1

a

d c

b

Simple example with 4 alphabets

• 𝑔(𝑎) = 0

• 𝑔(𝑏) = 11

• 𝑔(𝑐) = 101

• 𝑔(𝑑) = 100

Greedy Algorithms: Huffman Coding

0 1

0 1

0

0 1

1 1

a

b c d

Simple example with 4 alphabets

• 𝑂𝑓?

 Problem: Given an alphabet set ∑ containing 𝑛 alphabets and the
frequency of occurrence of alphabets (𝑡(𝑎1), 𝑡(𝑎2), … , 𝑡(𝑎𝑛)). Find
the prefix-free encoding 𝑓 that minimizes:
𝑂𝑓 = (𝑓 𝑎1 ⋅ 𝑡 𝑎1 + |𝑓(𝑎2)| ⋅ 𝑡 𝑎2 +⋯+ 𝑓 𝑎𝑛 ⋅ 𝑡(𝑎𝑛))

 Example: ∑ = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑡(𝑎) = 0.6, 𝑡(𝑏) = 0.2, 𝑡(𝑐) = 0.1, 𝑡(𝑑) = 0.1

Greedy Algorithms: Huffman Coding

• 𝑂𝑓?
0 1

0

0 1

1

a

d c

b

Simple example with 4 alphabets

 Problem: Given an alphabet set ∑ containing 𝑛 alphabets and the
frequency of occurrence of alphabets (𝑡(𝑎1), 𝑡(𝑎2), … , 𝑡(𝑎𝑛)). Find
the prefix-free encoding 𝑓 that minimizes:
𝑂𝑓 = (𝑓 𝑎1 ⋅ 𝑡 𝑎1 + |𝑓(𝑎2)| ⋅ 𝑡 𝑎2 +⋯+ 𝑓 𝑎𝑛 ⋅ 𝑡(𝑎𝑛))

 Example: ∑ = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑡(𝑎) = 0.6, 𝑡(𝑏) = 0.2, 𝑡(𝑐) = 0.1, 𝑡(𝑑) = 0.1

Greedy Algorithms: Huffman Coding

 Definition: Given a binary tree, the depth of a vertex 𝑣,

denoted by 𝑑(𝑣) is the length of the path from the root to 𝑣.

 Every binary tree gives a prefix-free encoding and every

prefix-free encoding gives a binary tree. We will now use

these properties to rephrase the previous problem in terms

of binary trees and depths of leaves.

Greedy Algorithms: Huffman Coding

 Problem: Given an alphabet set Σ containing 𝑛 alphabets and the

frequency of occurrence of alphabets (𝑡(𝑎1), 𝑡(𝑎2), … , 𝑡(𝑎𝑛)). Find

a binary tree 𝑇 with 𝑛 leaves (one leaf labeled with one alphabet) such

that:

𝑂𝑇 = (𝑑(𝑎1) ∗ 𝑡(𝑎1) + 𝑑(𝑎2) ∗ 𝑡(𝑎2) + ⋯+ 𝑑(𝑎𝑛) ∗ 𝑡(𝑎𝑛))

• 𝑑(𝑎𝑖) above is the depth of the leaf labeled with alphabet 𝑎𝑖

 What are the properties of the optimal tree 𝑇?

1. Claim: 𝑇 is a complete binary tree.

 Complete binary tree: Every non-leaf node has exactly two children.

Greedy Algorithms: Huffman Coding

 What are the properties of the optimal tree 𝑇?

1. Claim: 𝑇 is a complete binary tree.

 Complete binary tree: Every non-leaf node has exactly two children.

2. Claim: Consider the two alphabets 𝑥, 𝑦 with least frequency.

Then 𝑥 and 𝑦 have maximum depth in any optimal 𝑇 and

there is an optimal 𝑇 where 𝑥 and 𝑦 are siblings.

 Problem: Given an alphabet set Σ containing 𝑛 alphabets and the

frequency of occurrence of alphabets (𝑡(𝑎1), 𝑡(𝑎2), … , 𝑡(𝑎𝑛)). Find

a binary tree 𝑇 with 𝑛 leaves (one leaf labeled with one alphabet) such

that:

𝑂𝑇 = (𝑑(𝑎1) ∗ 𝑡(𝑎1) + 𝑑(𝑎2) ∗ 𝑡(𝑎2) + ⋯+ 𝑑(𝑎𝑛) ∗ 𝑡(𝑎𝑛))

• 𝑑(𝑎𝑖) above is the depth of the leaf labeled with alphabet 𝑎𝑖

Greedy Algorithms: Huffman Coding

 Let Ω be a new symbol not present in Σ. Consider the

following (smaller) problem:

 Σ′ = Σ − 𝑥, 𝑦 ∪ {Ω}

 For all 𝑧 in Σ’ ∖ {Ω}, 𝑡’(𝑧) = 𝑡(𝑧)

 𝑡’(Ω) = 𝑡(𝑥) + 𝑡(𝑦)
Find the optimal binary tree for the new alphabet Σ’ and the

new frequencies given by 𝑡’.

 Let 𝑇’ be the optimal binary tree for the above problem.

 Consider the leaf 𝑣 labeled with Ω in 𝑇’. Consider a new

tree 𝑇 where 𝑣 has two children that are leaves and are

labeled with 𝑥 and 𝑦.

 Claim: 𝑇 is the optimal tree for the original problem.

 Running time?

Huffman(Σ)

- Let 𝑣1, … , 𝑣𝑛 be nodes. Each node denoting an alphabet

- 𝑆 = {𝑣1, … , 𝑣𝑛}
-While (|𝑆| > 1)

- Pick two nodes 𝑥 and 𝑦 with the least value of 𝑡(𝑥) and 𝑡(𝑦)
- Create a new node 𝑧 and set 𝑡(𝑧) = 𝑡(𝑥) + 𝑡(𝑦)
- Set 𝑥 as the left child of 𝑧 and 𝑦 as the right child

- Remove 𝑥 and 𝑦 from 𝑆 and add 𝑧 to 𝑆
-When |𝑆| = 1, return the only node in 𝑆 as the root node of the Huffman Tree

Greedy Algorithms: Huffman Coding

Greedy Algorithms: Huffman Coding

 A DNA sequence has four characters 𝐴, 𝐶, 𝑇, 𝐺 and these

characters appear with frequency 30%, 20%, 10%, and 40%

respectively.

 We have to encode a sequence of length 1 million(106) in

bits.

 If we use two bits for each character, then the size of the

encoding will be 2 million bits.

 Huffman coding:

 𝑓(𝐴) = 10, 𝑓(𝐶) = 110, 𝑓(𝑇) = 111, 𝑓(𝐺) = 0

 We will need 1.9 million bits.

End

